
DockingFrames 1.0.7 - Common

Benjamin Sigg

March 15, 2009

1

Contents

1 Introduction 4

2 Notation 4

3 Basics 5
3.1 Concepts . 5
3.2 Hello World . 5

3.2.1 Setup controller . 6
3.2.2 Setup stations . 6
3.2.3 Setup dockables . 7

4 Foundation 9
4.1 Dockables . 9

4.1.1 SingleCDockable . 9
4.1.2 MultipleCDockable . 10
4.1.3 Visibility . 10
4.1.4 Mode . 11

4.2 Stations . 12
4.2.1 All in one: CContentArea 12
4.2.2 Center area: CGridArea 13
4.2.3 Minimized: CMinimizeArea 13
4.2.4 Grouping Dockables: CWorkingArea 13

5 Locations 15
5.1 For a single dockable: CLocation 15
5.2 For a group of dockables: CGrid 15
5.3 For all dockables: layout . 17

5.3.1 Persistant Storage . 17
5.3.2 Dealing with lazy creation and missing dockables 18

6 Actions 19
6.1 CButton . 19
6.2 CCheckBox . 19
6.3 CRadioButton . 20
6.4 CMenu . 20
6.5 CDropDownButton . 20
6.6 CBlank . 21
6.7 System Actions . 21
6.8 Custom Actions . 22

7 Other Effects 23
7.1 Color . 23
7.2 Font . 23
7.3 Size . 24

7.3.1 Lock the size . 24
7.3.2 Request a size . 24

7.4 Maximizing . 25
7.5 Preferences . 25
7.6 Themes . 26

2

7.7 LookAndFeel . 27
7.8 Menus . 27

7.8.1 Themes . 29
7.8.2 LookAndFeel . 29
7.8.3 Layout . 29
7.8.4 List of Dockables . 29
7.8.5 Preferences . 30

8 Suggestions 31
8.1 Of people using the library . 31
8.2 Of the developers . 31

A Properties 33

3

1 Introduction

DockingFrames is an open source Java Swing framework. This framework allows
to write applications with floating panels. A floating panel is a Component that
can be moved around by the user.

DockingFrames consists of two libraries, Core and Common. Common provides
advanced functionalities that are built on top of Core. Common is a wrapper
around Core and requires Core to work.

This document covers only Common, Core has its own guide. Not all the
details of Common are described, but this document gives a nice oversight of the
more important aspects.

You can utilize Common without understanding Core. But knowing at least
some basics about Core will make life much easier.

2 Notation

This document uses various notations.
Any element that can be source code (e.g. a class name) and project names

are written mono-spaced like this: java.lang.String. The package of classes
and interfaces is rarely given since almost no name is used twice. The pack-
ages can be easily found with the help of the generated API documentation
(JavaDoc).

Tips and tricks are listed in boxes.

Important notes and warnings are listed in boxes like this one.

Implementation details, especially lists of class names, are written
in boxes like this.

These boxes explain why some thing was designed the way it is.
This might either contain some bit of history or an explanation
why some awkward design is not as bad as it first looks.

4

3 Basics

Common is partitioned into three sub-projects.
For clients the sub-project common is the most interesting. This project is the

main layer above Core and also the most advanced layer in the whole framework.
The sub-project facile builds a basis for the features of common. In theory

facile could be used without common but in practice the classes and interfaces
are clearly designed to be used by or together with common.

Finally support consists of classes that are just used by facile and common.
These classes have few to none relations with DockingFrames and can be used
alone as well.

3.1 Concepts

In the understanding of Common an application consists of one main-window and
maybe several supportive frames and dialogs. The main-window is most times
a JFrame and the application runs as long as this frame is visible. The main-
window consists of several panels. Each panel shows some part of the data. E.g.
the panels of a browser could be the “history”, the “bookmarks” and the open
websites.

Common is an additional layer between panels and main-frame. It separates
them and allows the user to drag & drop panels.

To do so each panel gets wrapped into a CDockable. These CDockables are
then put onto CStations. A controller (CControl) handles the movement of
the dockables.

Figure 1: The standard application without Common. A main-frame and some
panels that are put onto the main-frame.

3.2 Hello World

This chapter introduces the very basic vocabulary and shows a first example.
In depth discussions of the concepts and implementations follow in the chapters
afterwards.

5

Figure 2: An application with Common. The panels are wrapped into dockables.
The dockables are put onto stations which lay on the main-frame. Dockables
can be moved to different stations.

3.2.1 Setup controller

The first step should be to create a CControl. A CControl wires all the objects
of the framework together. CControl has more than one constructor, for this
example it is sufficient to use the one constructor which requires only a JFrame.
CControl monitors the state of this frame and ensures that the windows of
Common are only visible when the frame is visible. Also dialogs created by the
framework will have this frame as parent.

The code to create the controller looks like this:
1 public c lass Example{
2 public stat ic void main (St r ing [] a rgs){
3 JFrame frame = new JFrame () ;
4 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
5
6 CControl c on t r o l = new CControl (frame) ;
7
8 . . .

3.2.2 Setup stations

The second step is to setup the layer between main-frame and dockables. There
are different CStations available. For example the CMinimizeArea shows min-
imized CDockables. Instead of creating the stations manually one can also use
a CContentArea. The CContentArea is a panel that consists of five stations. In
the center a grid of dockables is shown, at the border four areas are reserved for
minimized dockables.

There is always a default-CContentArea available, it can be accessed by
calling getContentArea of CControl. If required additional CContentAreas
can be created by the method createContentArea of CControl.

A CContentArea is a JComponent, so its usage is straight forward. Line 10
is the important new line in this code:

1 public c lass Example{
2 public stat ic void main (St r ing [] a rgs){

6

3 JFrame frame = new JFrame () ;
4
5 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
6
7 CControl c on t r o l = new CControl (frame) ;
8
9 frame . setLayout (new GridLayout (1 , 1)) ;

10 frame . add (con t r o l . getContentArea ()) ;
11
12 . . .

CControl always creates an additional station for handling exter-
nalized dockables.

3.2.3 Setup dockables

The last step is to set up some CDockables. CDockables are the things that can
be dragged and dropped by the user. A CDockable has a set of properties, e.g.
what text to show as title, whether it can be maximized, what font to use when
focused, and so on. CDockables are divided into two categories: “single” and
“multi” dockables. These categories are explained later, for this first example
single dockables are the correct choice. Single dockables are represented by the
interface SingleCDockable. The class DefaultSingleCDockable provides an
easy to use implementation. In the code below new single dockables are created
in lines 23-25 and 43-48. They need to be registered at the CControl in lines
27-29, otherwise they cannot be shown. Optionally the initial position can be
set like in line 33 and 36. There is no need to set the position of the first
dockable red: since it is the first it gets per default all the space.

1 import java . awt . Color ;
2 import java . awt . GridLayout ;
3
4 import javax . swing . JFrame ;
5 import javax . swing . JPanel ;
6
7 import b i b l i o t h ek . gui . dock . common . CControl ;
8 import b i b l i o t h ek . gui . dock . common . CLocation ;
9 import b i b l i o t h ek . gui . dock . common . DefaultSingleCDockable ;

10 import b i b l i o t h ek . gui . dock . common . SingleCDockable ;
11
12 public c lass Example{
13 public stat ic void main (St r ing [] a rgs){
14 JFrame frame = new JFrame () ;
15
16 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
17
18 CControl c on t r o l = new CControl (frame) ;
19
20 frame . setLayout (new GridLayout (1 , 1)) ;
21 frame . add (con t r o l . getContentArea ()) ;
22
23 SingleCDockable red = c r ea t e (”Red” , Color .RED) ;
24 SingleCDockable green = cr ea t e (”Green” , Color .GREEN) ;
25 SingleCDockable blue = c r ea t e (”Blue” , Color .BLUE) ;
26
27 con t r o l . add (red) ;
28 con t r o l . add (green) ;
29 con t r o l . add (blue) ;
30
31 red . s e tV i s i b l e (true) ;
32
33 green . s e tLocat i on (CLocation . base () . normalSouth (0 .4)) ;

7

34 green . s e tV i s i b l e (true) ;
35
36 blue . s e tLocat i on (CLocation . base () . normalEast (0 .3)) ;
37 blue . s e tV i s i b l e (true) ;
38
39 frame . setBounds (20 , 20 , 400 , 400) ;
40 frame . s e tV i s i b l e (true) ;
41 }
42
43 public stat ic SingleCDockable c r e a t e (S t r ing t i t l e , Color c o l o r){
44 JPanel background = new JPanel () ;
45 background . setOpaque (true) ;
46 background . setBackground (c o l o r) ;
47
48 return new DefaultSingleCDockable (t i t l e , t i t l e , background) ;
49 }
50 }

8

4 Foundation

This chapter focuses on the foundation of Common: CControl, the stations and
dockables.

4.1 Dockables

As mentioned in the previous chapter CDockables fall in one of two categories:
“single” or “multiple”. Only one instance of a single dockable may exist in the
realm of a CControl, but many (or none) instances of a multiple dockable may
exist. In many cases both kind of dockables have the same behavior, but there
are some exceptions when it comes to the storage of their location.

Every CDockable needs to be registered at a CControl, the methods with
name add can be used. They need to be made visible by calling setVisible of
CDockable.

The interface CDockable has some awkward methods whose
implementation is already described in the documentation.
CDockable is not intended to be implemented by clients, but to
be used by them. There is a subclass AbstractCDockable which
provides the correct implementation for these awkward methods.
Even in the framework itself no class (except AbstractCDockable)
implements CDockable directly. The only reason for the existence
of CDockable is to provide an abstraction from the implementa-
tion.

A CDockable is not a Dockable, but internally references a
Dockable. This Dockable is always of type CommonDockable.
It can be accessed through the method intern of CDockable.
Clients should avoid modifying this Dockable directly.

4.1.1 SingleCDockable

The representation of a single dockable is SingleCDockable. A single dockable
is created once, added to the control and made visible. It remains in memory
until explicitly removed from the CControl or the application terminates.

In order to store attributes (like the position) persistently each
SingleCDockable requires a unique identifier.

Clients best use a DefaultSingleCDockable. A DefaultSingleCDockable
can be used like a JFrame, for example it also has a content-pane, has methods
to set the title-text, etc.

Examples for single dockables could be:

� A browser has one panel “history”, the panel is shown on a single dockable.

� A view that is most of the time invisible. A single dockable is created
lazily the first time when the view is shown.

9

4.1.2 MultipleCDockable

MultipleCDockable are used if the number of instances is not known prior to
runtime. Each kind of MultipleCDockable is associated with a
MultipleCDockableFactory. The framework can delete or create new instances
of this kind of dockable whenever they are needed.

Clients are required to install the MultipleCDockableFactory before using
any MultipleCDockable. There is a class DefaultMultipleCDockable which
should provide all the features a client needs.

An example:
1 CControl c on t r o l = . . .
2
3 MultipleCDockableFactory<MyDockable , MyLayoutInformation> = new . . .
4 c on t r o l . addMultipleDockableFactory (”unique id ” , f a c t o ry) ;
5
6 MyDockable dockable = new . . .
7 c on t r o l . add (dockable) ;

Notice that in line 4 a unique identifier needs to be assigned to the factory.
Implementing a MultipleCDockableFactory is easy. There is a method to

read and to write meta-information from or to a MultipleCDockable. Meta-
information itself is a MultipleCDockableLayout which has methods to write
or read its content to a stream (e.g. to file). There are no restrictions to what
meta-information really is.

Examples for multiple dockables are:

� A text-editor can show many documents at the same time. Each document
is shown in its own dockable.

� A 3D modeling software allows to see the modeled object from different
angles. Each camera is a dockable.

In Common each CDockable requires to have a unique identi-
fier. The framework will automatically create an identifier for
MultipleCDockables.

Why the distinction between single and multiple dockables? The
algorithms to store and load the layout (place and size of dock-
ables) can either use existing objects or create new dockables. Us-
ing existing objects is preferred because the overhead of creation
can be - at least for complex views - high. Single and multiple
CDockables represent this gap.

4.1.3 Visibility

A dockable is either visible or invisible. The user cannot interact with the
dockable unless it is visible. There is more than one path to change visibility.

The direct approach is to call the method setVisible of CDockable. This
method will show the dockable at its last known location.

A dockable is made visible implicitly if it is added to any station. This can
happen if for example using a CGrid like explained in chapter 5.

10

Finally the user can make a dockable invisible by clicking on its close-button.
Every subclass of DefaultCDockable has the method setCloseable to change
whether the user can click away the element.

Visibility can be monitored with a CDockableStateListener. Either for a
single dockable by adding the listener directly to the dockable, or globally by
adding the listener to CControl. An example:

1 CDockable dockable = . . .
2
3 dockable . addCDockableStateListener (new CDockableAdapter () {
4 @Override
5 public void v i s i b i l i t yChanged (CDockable dockable){
6 System . out . p r i n t l n (” V i s i b i l i t y changed to ’ ” +
7 dockable . i s V i s i b l e () + ” ’ ”) ;
8 }
9 }) ;

The default behavior of the close-action is to call setVisible with visible
set to false, so overriding this method is an easy way to introduce some addi-
tional code that is executed directly before the dockable closes.

The close-action can be replaced by calling putAction with the
key ACTION KEY CLOSE of CDockable. The action can be replaced
at any time. Read more about actions in chapter 6.

If the method setLocation of AbstractCDockable is called be-
fore the dockable is made visible, then the dockable is made visible
at the supplied location. Read more about locations in chapter 5.

4.1.4 Mode

If a CDockable is visible then it always is in an extended-mode. The extended
mode tells something about the behaviour of the dockable and where it is placed.
There are four extended modes available:

normalized The normal state of a dockable. It is placed on the main-frame of
the application, but only covers a fraction of the main-frame.

maximized A maximized dockable takes all the space it gets and often covers
other dockables.

minimized A minimzed dockable is not directly visible. Only a button at one
edge of the main-frame indicates the existance of the dockable. If the
button is pressed then the dockable pops up. As soon as it loses focus it
disapears again.

externalized The dockable receives its own window. Per default the window
is an undecorated JDialog and child of the main-frame.

Users can change the extended mode either by dragging the dockable to
a new area, or by clicking some buttons that are visible in the title of each
dockable.

11

Clients can access and change the extended mode by calling
getExtendedMode and setExtendedMode of CControl. A dockable has no ex-
tended mode if not visible. Furthermore clients can forbid a dockable to go into
some extended modes. Methods like setMaximizable of DefaultCDockable
allow that. Finally clients can exchange the button that must be pressed by the
user by calling putAction of AbstractCDockable. Keys for putAction are de-
clared as String constants in CDockable with names like ACTION KEY MINIMIZE.

4.2 Stations

Stations are needed to place and show CDockables. A station provides the
Component(s) (e.g. a JPanel or a dialog) that are the parents of the dockables.
Stations are represented through the interface CStation.

CStations delegate most of their work to some DockStation of Core. Like
dockables a CStation requires a unique identifier. This identifier is used to
persistently store and load layout information.

Currently only the existing DockStations from Core are truly
supported by Common. The StateManager makes a few as-
sumptions what station is associated with what mode, e.g. a
FlapDockStation is associated with mode “minimized”. Future
versions of the framework might be designed more open, allow-
ing developers to add new modes or other associations. Some
improvements were already introduced in version 1.0.7.

4.2.1 All in one: CContentArea

The preferred way to create stations is to use a CContentArea. A CContentArea
is not a single CStation but a panel containing many stations. Each content-
area has a center area where dockables are layed out in a grid, and four small
areas at the border where dockables show up when they are minimized.

There is a default-CContentArea present and can be accessed through
getContentArea of CControl. A content-area can later be used like any other
Component:

1 JFrame frame = . . .
2 CControl c on t r o l = . . .
3
4 CContentArea area = con t r o l . getContentArea () ;
5 frame . add (area) ;

If more than one content-area is needed then clients can use
createContentArea of CControl to create additional areas. These additional
areas can later be removed through removeContentArea. The default content-
area cannot be removed.

The default content-area is created lazily. There is no obli-
gation to use or create it, clients can as well directly call
createContentArea or not use them at all.

12

While CContentArea has a public constructor clients should prefer
to use the factory method createContentArea. In future releases
the constructor might be changed.

To place dockables onto a content-area a CGrid can be of help. With the
method deploy the content of a whole CGrid can be put onto the center area.
More about CGrid and other mechanisms to position elements are listed up in
chapter 5.

4.2.2 Center area: CGridArea

A CGridArea is kind of a lightweight version of CContentArea. A grid-area
contains normalized and maximized dockables. Other than a content-area it
cannot show minimized dockables.

CGridAreas should be created through the factory method createGridArea
of CControl. If it is no longer required it can be removed through the method
removeStation.

Like CContentArea a CGridArea has the method deploy to add a whole set
of dockables quickly to the area.

Usage of a grid-area could look like this:
1 JFrame frame = . . .
2 CControl c on t r o l = . . .
3
4 CGridArea cente r = con t r o l . createGridArea (” cente r ”) ;
5 frame . add (cente r . getComponent ()) ;

Notice that in line 5 the method getComponent has to be called. This method
returns the Component on which the station lies.

Some more things that might be interesting:

� A grid-area implements SingleCDockable, hence it can be
a child of another area. Remember that the area must be
manually added to the CControl as dockable.

� The method setMaximizingArea influences of what hap-
pens when a child of the area gets maximized. If true was
given to the method then the child gets maximized within
the boundaries of the grid-area. Otherwise the child might
cover the area or even be transfered to another area.

4.2.3 Minimized: CMinimizeArea

Most things that were said for CGridArea hold true for CMinimizeArea as well.
A minimize-area should be created through createMinimizeArea of CControl.

4.2.4 Grouping Dockables: CWorkingArea

The CWorkingArea is a subclass of CGridArea. The difference between them
is, that the property working-area is false for a grid-area, but true for a

13

CWorkingArea.
Having this property set to true places some constraints on the station:

� Children of this station cannot be moved to another station if that other
station shows dockables in normalized mode. For a user this means
that children can only be minimized, maximized or externalized, but not
dragged away.

� The user cannot drag dockables away from the station unless they are
already children of the station.

� If the station has no children then it appears as grey, empty space which
does not go away.

� Children of a working-area are not stored for temporary layout. For the
user this means that applying a layout does neither affect the station, nor
dockables that can be put onto the station.

CWorkingAreas can be used to display a set documents. For example in an
IDE (like Eclipse or Netbeans) each source file would get its own CDockable
which then is put onto the working-area.

The children of a CWorkingArea are often good candidates for
being MultipleCDockables.

14

5 Locations

Location means position and size of a dockable. A location can be relative to
some parent of a dockable or it can be fix.

5.1 For a single dockable: CLocation

The location of a single dockable is represented by a CLocation. The method
getBaseLocation of CDockable gets the current location and the method
setLocation changes the current location.

Most subclasses of CLocation offer one or more methods to optain new lo-
cations. An example: CGridAreaLocation offers the method north. While
CGridAreaLocation represents just some CGridArea, the location optained
through north represents the upper half of the grid-area. Clients can chain
together method calls to create locations:

1 CGridAreaLocation root = . . .
2 CDockable dockable = . . .
3
4 CLocation l o c a t i o n = root . north (0 .5) . west (0 .5) . s tack (2) ;
5 dockable . s e tLocat i on (l o c a t i o n) ;

The chain of calls in line 4 creates a location pointing to the upper left quarter
of some grid-area. Assuming there is a stack of dockables in that quarter, the
location points to the third entry of that stack. In line 5 the location of dockable
is set, the framework will try to set dockable at the exact location but cannot
make any guarantees (e.g. if there is no stack in the upper left quarter, then
framework cannot magically invent one).

To create a root-location clients can call one of the static factory methods
of CLocation or directly instantiate the location. Calling the factory methods
of CLocation is preferred.

Setting the location of a dockable a to the location of another dockable b
will move away b from its position. As an example:

1 CDockable a = . . .
2 CDockable b = . . .
3
4 CLocation l o c a t i o n = b . getBaseLocat ion () ;
5 a . s e tLocat i on (l o c a t i o n) ;

If b should remain at its place then the method aside of CLocation can
create a location that is near to b, but not exactly b’s position:

5 a . s e tLocat i on (l o c a t i o n . a s i d e ()) ;

CLocation is a wrapper around DockableProperty. While each
DockableProperty has its own API and concepts, CLocations
unify usage by providing the chain-concept. The chain-concept
allows some typesafety and should reduce the amount of wrongly
put together locations.

5.2 For a group of dockables: CGrid

Sometimes it is necessary to set the position of several dockables at once. For
example when the application starts up a default layout could be created. If

15

dockables are minimized or externalized the position can simply be set with
CLocations. If dockables are shown normalized on a grid-area, a working-
area, or the center of a CContentArea then things get more complex. Using
CLocation would require a precise order in which to add the dockables, and
some awkward coordinates to make sure they are shifted at the right place
when more dockables become visible.

CGrid is a class that collects dockables and their boundaries. All this infor-
mation can then be put onto a grid-like areas in one command. Furthermore a
CGrid can also automatically register dockables at a CControl. An example:

1 CControl c on t r o l = . . .
2
3 SingleCDockable s i n g l e = new . . .
4 MultipleCDockable mult i = new . . .
5
6 CGrid g r id = new CGrid (con t r o l) ;
7
8 g r id . add (0 , 0 , 1 , 1 , s i n g l e) ;
9 g r id . add (0 , 1 , 1 , 2 , mult i) ;

10
11 CContentArea content = con t r o l . getContentArea () ;
12 content . deploy (g r id) ;

The CGrid created in line 6 will call the add-methods of control (line 1) with
any dockable that is given to it. In lines 8,9 two dockables are put onto the
grid. The numbers are the boundaries of the dockables. In line 12 the contents
of the grid are put onto content. The dockables single and multi will be
arranged such that multi has twice the size of single.

Boundaries are relative to each other, there is no minimal or maximal value
for a coordinate or size. CGrid is able to handle gaps and overlaps, but such
defections might yield awkward layouts.

Make sure not to add a dockable twice to a CControl. If using a
CGrid the add method of CControl must not be called.
Also note that there is a second constructor for CGrid that does
not have any argument. If that second constructor is used, then
the CGrid will not add dockables to any CControl.

Dockables can also be grouped in a stack by CGrid. Any two
dockables with the same boundaries are grouped. The add method
uses a vararg-argument, more than just one dockable can be placed
with the same boundaries this way.

Internally CGrid uses a SplitDockGrid. SplitDockGrid contains
an algorithm that creates a SplitDockTree. This tree has dock-
ables as leafs and relations between dockables are modeled as
nodes. A SplitDockTree can be used by a SplitDockStation
to build up its layout.

16

5.3 For all dockables: layout

The “layout” is the set of all locations, even including invisible dockables.
CControl supports the storage and replacement of layouts automatically.
Clients only need to provide some factories for their custom dockables. A layout
does not have direct references to any dockable, it is completely independent of
gui-components.

There are four important methods in CControl used to interact with layouts:

� save - stores the current layout. The method requires a String argument
that is used as key for the layout. If a key is alread used then the old
layout gets replaced with the new one.

� load - is the counterpart to save. It loads a layout that was stored earlier.

� delete - deletes a layout.

� layouts - returns all the keys that are in use for layouts.

The class CLayoutChoiceMenuPiece can build some JMenuItems
that allow the user to save, load and delete layouts at any time.
More about MenuPieces can be found in chapter 7.8.

Layouts are divided into two subsets: “entry” and “full” layouts.
An entry-layout does not store the location of any dockable that is
associated with a working-area. A full-layout stores all locations.
The method save always uses entry-layouts and a full-layout is
only used when the applications properties are stored persistantly
in a file.
Working-areas are intended to show some documents that are only
temporarely available. Assuming that each dockable on a working-
area represents one such document it makes perfectly sense not
to replace them just because the user chooses another layout.
Changing them would mean to close some documents and load
other documents, and that is certainly not the behaviour the user
would expect.

The client is responsible to store the contents of any single-
dockable.

5.3.1 Persistant Storage

Common uses a class called ApplicationResourceManager to store its properties.
Among other things all layout information is stored in this resource-manager.
Normally any information in the resource-manager gets lost once the application
shuts down. But clients can tell the resource-manager to write its contents into

17

a file. Either they call getResources of CControl and then one of the many
methods that start with “write” or they use directly CControl. An example:

1 F i l e f i l e = new F i l e (” layout . data”) ;
2
3 // wri te proper t i e s
4 con t r o l . wr i t e (f i l e) ;
5
6 // read proper t i e s
7 con t r o l . read (f i l e) ;

5.3.2 Dealing with lazy creation and missing dockables

While MultipleCDockables are created only when they are needed, Common as-
sumes that SingleCDockables are always present. However this assumption
would require to create components that might never be shown. In order to
solve the problem SingleCDockableBackupFactory was introduced. If a miss-
ing single-dockable is required the factories method createBackup is called.
Assuming the factory returns not null then the new dockable is properly added
to CControl and made visible.

SingleCDockableBackupFactorys need to be registered at the CControl
using the method addSingleBackupFactory. They can also be removed using
the method removeSingleBackupFactory.

If a dockable is removed from a CControl then normally all its
associated location information is deleted. If however a backup-
factory with the same id as the dockables id is registered, then the
location information remains. If another dockable with the same
id is later registered, then this new dockable inherits all settings
from the old one.

CControls behavior for missing dockables can be fine tuned with
a MissingCDockableStrategy.

18

6 Actions

Actions are small graphical components associated with a dockable. They can
show up at different locations, e.g. as buttons in the title. An action is an

Figure 3: A set of actions on a dockable. The actions are the icons within the
red oval.

instance of CAction. Common provides several subclasses of CAction. CActions
can be added to any DefaultCDockable through the method addAction. An
example:

1 DefaultCDockable dockable = . . .
2 CAction ac t i on = new . . .
3
4 dockable . addAction (ac t i on)

To separate a group actions from another group a separator is needed. The
method addSeparator of DefaultCDockable adds such a separator. Separators
are specialized CActions.

An action is not a Component, it can appear at the same time at different
locations with different views. For example an action can be seen as button in
a title and at the same time as menu-item in a popup-menu.

6.1 CButton

CButtons are actions that can be triggered many times by the user and will
always behave the same way. CButtons need to be subclassed, its abstract
method action will be called whenever the button is triggered. An example:

1 public c lass SomeAction extends CButton{
2 public SomeAction () {
3 setText (”Something”) ;
4 }
5
6 protected void ac t i on () {
7 . . .
8 }
9 }

6.2 CCheckBox

This action has a state, it is either selected or not selected (true or false).
Whenever the user triggers the action the state changes. Like CButton is must

19

be subclassed. The method changed will be called when the state changes. An
example:

1 public c lass SomeAction extends CCheckBox{
2 public SomeAction () {
3 setText (”Something”) ;
4 }
5
6 protected void ac t i on () {
7 boolean s e l e c t e d = i s S e l e c t e d () ;
8 . . .
9 }

10 }

6.3 CRadioButton

In most aspects the CRadioButton behaves like a CCheckBox. CRadioButtons
are grouped together, the user can select only one of the buttons in a group. A
group is realized with the help of the class CRadioGroup:

1 CRadioButton buttonA = . . .
2 CRadioButton buttonB = . . .
3
4 CRadioGroup group = new CRadioGroup () ;
5
6 group . add (buttonA) ;
7 group . add (buttonB) ;

6.4 CMenu

A CMenu is a list of CActions. The user can open the CMenu and it will show a
popup-menu with its actions. Clients can add and remove actions from a CMenu
through methods like add, insert, or remove.

6.5 CDropDownButton

A CDropDownButton consists of two buttons. One of them opens a menu, the
other one triggers the last selected item of that menu again.

The behavior of CDropDownButton can be influenced through its items. This
requires that the items are subclasses of CDropDownItem. CButton, CCheckBox
and CRadioButton fulfill this requirement. There are three properties to set:

� dropDownSelectable - whether the action can be selected at all. If not,
then clicking onto the item might trigger it, but the drop-down-buttons
icon and text will remain unchanged.

� dropDownTriggerableNotSelected - if not set, then this item cannot be
triggered if not selected. As a consequence the item must be clicked twice
until it reacts.

� dropDownTriggerableSelected - if not set, then this item cannot be
triggered if selected. It still can be triggered by opening the menu and
then clicking onto the item.

If a CDropDownButton cannot trigger its selected item, then it just opens its
menu.

20

Figure 4: An open CMenu. The action itself is at the top within the red circle.
Its menu consists of CButtons and a separator, the menu is within the blue oval.

6.6 CBlank

This action is not visible and does nothing. It can be used as placeholder where
a null reference would cause problems, e.g. because null is sometimes replaced
by some default value.

6.7 System Actions

Common adds a number of actions to any CDockable, e.g.: the close-button.
These actions are deeply hidden within the system and cannot be accessed.
There is however a mechanism to replace them with custom actions. Each
CDockable has a method getAction which is called before a system action is
put in place. If this method does return anything else than null then the system
action gets replaced. AbstractCDockable offers the method putAction to set
these replacements. An example:

1 SingleCDockable dockable = . . .
2 CAction replacement = . . .
3
4 dockable . putAction (CDockable .ACTION KEY MAXIMIZE, replacement) ;

In this example whenever the maximize-action of dockable should be visible,
replacement is shown. This feature should of course be treated with respect,
changing the behavior of an action can confuse the user a lot.

The class CCloseAction is an action that closes any dockable
on which it is shown. The subclasses of CExtendedModeAction
change the extended-mode of their dockables.

21

Figure 5: A CDropDownButton within a red circle.

6.8 Custom Actions

Clients are free to write their custom actions. They need to implement a new
DockAction and a subclass of CAction. The subclass can give its super-class
an instance of the custom DockAction or call init to set the action. Please
refere to the guide for Core to find out how to implement a DockAction.

22

7 Other Effects

Common allows to customize some behavior and components. Understanding
these features is not necessary to work with Common, but impressive effects can
be built with them. This chapter will, without any specific order, introduce
some of these features.

7.1 Color

Every dockable has a ColorMap. This map contains colors that are used in the
graphical user interface. Normally the map is empty and some default colors
are used. If a client puts some colors into the ColorMap, then the user interface
is immediatelly updated using the new colors. ColorMap itself contains a set of
keys that can be used, as an example:

1 CDockable dockable = . . .
2 ColorMap map = dockable . ge tCo lo r s () ;
3 map . s e tCo lo r (ColorMap .COLOR KEY TAB BACKGROUND, Color .RED) ;

Some keys are specialications of other keys. For example
COLOR KEY TAB BACKGROUND changes the background of tabs,
while COLOR KEY TAB BACKGROUND FOCUSED changes the back-
ground of focused tabs only. A specialized key overrides the value
provided by a general key.

Colors require the support of a DockTheme that applies them.
Only themes of Common do that, the original themes of Core will
render the ColorMap useless. In Common clients should interact
with themes only through the ThemeMap, this map will make sure
that only themes are used that support colors.
Also note that some Components, like the JTabbedPane, and some
LookAndFeels do not support custom colors.

7.2 Font

Exactly like the color, fonts of dockables can be exchanged. Each dockable has
a FontMap which contains FontModifiers. FontModifiers can change some
property of a font, an example:

1 CDockable dockable ;
2 FontMap fon t s = dockable . getFonts () ;
3
4 Gener icFontModi f ier i t a l i c = new Gener icFontModi f ier () ;
5 i t a l i c . s e t I t a l i c (Gener icFontModi f ier . Modify .ON) ;
6 f on t s . setFont (FontMap .FONT KEY TAB, i t a l i c) ;

The FontModifier italic will change the italic flag of the original font to true
(line 5).

23

Some Components, like the JTabbedPane, and some LookAndFeels
do not support custom fonts. In this case the settings are just
ignored.

7.3 Size

Every dockable has a width and a height. Some dockables are flexibel in their
size, others would be better of with a constant size. There is a feature to lock
the size and a feature to set a specific size.

7.3.1 Lock the size

Every AbstractCDockable has the method setResizeLocked. If the size is
locked through this method than any station will try not to change the size of the
dockable. There are also methods to lock only width or height
(setResizeLockedHorizontally and setResizeLockedVertically).

Locking the size does not prevent the user from manually resizing
the dockable. And sometimes a station needs to violate the locking
as well, e.g.: when a grid-area has only one child the size cannot
be choosen freely.

7.3.2 Request a size

It is also possible for client code to request a specific size for one or many
CDockables. Clients need to call setResizeRequest and maybe
handleResizeRequest like in the example below:

1 CControl c on t r o l = . . .
2
3 DefaultCDockable a = . . .
4 DefaultCDockable b = . . .
5
6 a . se tRes i zeRequest (new Dimension (200 , 300) , fa l se) ;
7 b . se tRes i zeRequest (new RequestDimension (500 , true) , fa l se) ;
8
9 con t r o l . handleRes izeRequests () ;

In this example two resize requests are handled at the same time. In line 6
the resize request of a is set to 200, 300, the argument false tells a not yet to
process the request. In line 7 the resize request of b is set, b should have the
width 500 but should not care about its height. Finally in line 9 all the requests
are processed together. If the second parameter in line 7 would be true instead
of false, then line 9 would not be necessary.

Not processing a request directly, but collect them, allows requests
to interact with each other. Assume three dockables in a line and
the task to resize the two elements at the begin and end of the
line. If one resize request is handled before the other, than the
second request might destroy the work of the first one.

24

Every object can add a ResizeRequestListener to CControl,
this listener will be called when resize requests need to be pro-
cessed. Most of the CStations add such a listener. The only
station on which requests can have complex interactions is the
CGridArea (and the CContentArea). With the PropertyKey
RESIZE LOCK CONFLICT RESOLVER, defined in CControl, clients
can set the algorithm that is used to solve contradictions in a
CGridArea.

7.4 Maximizing

When maximizing a CDockable first the global CMaximizeBehavior is asked for
the real element to maximize. If for example a dockable is part of a whole stack
of dockables, then the maximize-behavior might decide to maximize the whole
stack instead of the single dockable. In a second step the tree of stations and
dockables is traversed upwards until a MaximizeArea is found, the element is
then shown on this area. If no MaximizeArea can be found in the ancestors,
then a default area is taken.

Clients are not (yet) able to influence the second step, but they can change
the CMaximizeBehavior:

1 CControl c on t r o l = . . .
2 CMaximizeBehaviour behaviour = . . .
3
4 con t r o l . getStateManager () . setMaximizeBehavior (behavior) ;

In line 2 a custom behavior is declared, in line 4 the behavior is set.

Most the things that need to be done for changing the ex-
tended mode (like the “maximized mode”) are handled by the
CStateManager.

7.5 Preferences

Common allows users to set some properties like the keys that need to be pressed
in order to maximize a dockable (ctrl+m). Normally this mechanism is deacti-
vated and clients first need to activate it:

1 CControl c on t r o l = . . .
2 PreferenceModel p r e f e r e n c e s = new CPreferenceModel (c on t r o l) ;
3
4 con t r o l . s e tPre fe renceMode l (p r e f e r e n c e s) ;

This piece of code activates the preference mechanism. In line 2 the set of
preferences that can be changed by the user is set up, a CPreferenceModel
is often the best choice. Then in line 4 the model is connected to control.
Calling setPreferenceModel will activate persistant storage for model and also
immediatelly load values into the model.

The model can later be presented to the user:
1 CControl c on t r o l = . . .
2 PreferenceModel model = con t r o l . getPre ferenceModel () ;
3 Component owner = con t r o l . i n t e rn () . g e tCon t r o l l e r () . findRootWindow () ;
4

25

5 i f (model instanceof PreferenceTreeModel){
6 PreferenceTreeModel t r e e = (PreferenceTreeModel) model ;
7 Pre f e renceTreeDia log . openDialog (tree , owner) ;
8 }
9 else {

10 Pre f e r enceDia log . openDialog (model , owner) ;
11 }

In line 3 the root window of the application is searched, it is used as parent
window for any dialog that needs to be opened. In line 7 or line 10 a dialog is
opened that shows the preferences. There are two different dialogs, one with a
tree at the left side to make select a subset of preferences, one without tree.

There are different preference models. CPreferenceModel con-
tains all possible preferences for Common, it consists of four other
models:

� CKeyStrokePreferenceModel: The different key combina-
tions that, when pressed, initiate some action.

� CLayoutPreferenceModel: General settings for the themes.

� BubbleThemePreferenceModel: Settings affecting the
eclipse-theme.

� EclipseThemePreferenceModel: Settigns affecting the
bubble-theme.

Internally each item of the model is a Preference, clients can put
together their own model.

The class CPreferenceMenuPiece can act as a menu-item for
opening the preference-dialog, read more about menus in chap-
ter 7.8.

7.6 Themes

A theme sets look and behavior of DockingFrames. Themes are managed by
the ThemeMap, this map contains Strings as keys and ThemeFactorys as values.
ThemeMap is however more than just a map, it also tells which theme is currently
selected. Clients can call select to change the selection.

In the current version 5 themes are always installed per default, the keys of
these 5 themes are stored as constants directly in ThemeMap.

Working with the ThemeMap could look like this:
1 CControl c on t r o l = . . .
2 ThemeMap themes = con t r o l . getThemes () ;
3
4 themes . s e l e c t (ThemeMap .KEY FLAT THEME) ;
5
6 themes . add (”custom” , new CustomFactory ()) ;

In line 2 the map is accessed. In line 4 one of the preinstalled themes is selected,
this theme is applied to control. In line 6 a factory for a custom theme is
installed.

26

A theme has much freedom in how to present the dockables. But
Common allows clients to set color and font of various elements asso-
ciated with a CDockable. The standard themes of Core would not
respect these settings, hence Common needs some modified themes.
The ThemeMap is an attempt to hide this ugly fact from developers
and to make sure they don’t use the wrong theme.

7.7 LookAndFeel

LookAndFeel tells a Swing application how to paint things and how to behave.
The relation between LookAndFeel and Swing is like the relation between theme
and DockingFrames. The LookAndFeel can be changed while the application
runs, but the method updateUI must be called for each and every existing
JComponent by the client itself.

Of course, clients are free to implement such a function. DockingFrames
will detect a change of the LookAndFeel and update itself where necessary, but
it will not update the JComponents.

But Common includes better support for LookAndFeel changes. The class
LookAndFeelList provides a list of all available LookAndFeels and allows to
change the current selection. Per default the list does not exist but clients can
easily create one:

1 LookAndFeelList l i s t = LookAndFeelList . g e tDe f au l tL i s t () ;
2
3 CControl c on t r o l = . . .
4
5 ComponentCollector c o l l e c t o r =
6 new Dockab leCo l l ec tor (c on t r o l . i n t e rn ()) ;
7 l i s t . addComponentCollector (c o l l e c t o r) ;
8
9 XElement x s e t t i n g s = . . .

10 l i s t . readXML(x s e t t i n g s) ;

In line 1 a LookAndFeelList is accessed, calling getDefaultList will create
it. In order to automatically update JComponents they need to be connected to
the list. This is done with the help of ComponentCollectors. If for example
a CControl like control (line 3) is given, then the class DockableCollector
(lines 5-7) is able to collect all components related to it. This includes all
dockables but also the root-window of the application. The LookAndFeelList
can store its state persistantly and later read the state, for example in line 9
some earlier setting is accessed and in line 10 the settings are applied.

If using a CLookAndFeelMenuPiece then everything in the exam-
ple snippets gets done automatically. Read chapter 7.8.2 to learn
more about this menu.

7.8 Menus

Most Swing applications use menus (like in figure 6). DockingFrames contains
a few actions that fit nicely into a menu, for example store and load a layout.

For a given option the number of required menu-items may change during
runtime, e.g. every stored layout requires one item. But developers may not

27

want to add one JMenu for each option of DF. To resolve this problem Common
introduces a very small framework that allows the management of dynamically
growing or shrinking menus.

Figure 6: Some menus.

The most important class of the menu-framework is the MenuPiece. Basi-
cally a MenuPiece is a list of Components which informs observers if it changes
its size. There are around 15 subclasses of MenuPiece, they allow to compose
many pieces to one big piece or have more specific duties like providing the
stored layouts.

An incomplete list of composing MenuPieces contains:

RootMenuPiece : Represents a whole JMenu.

SubMenuPiece : A wrapper around a RootMenuPiece allowing it to act like a
submenu.

NodeMenuPiece : Just a list of MenuPieces that act like one big piece.

SeparatingMenuPiece : A wrapper around another MenuPiece introducing
separators at the top and/or bottom.

Other MenuPieces that might be interesting are:

BaseMenuPiece : A good base class for custom MenuPieces, al-
lows to add or remove Components directly.

FreeMenuPiece : A piece that does not add children by itself
but has public methods which can be invoked by clients to
modify the piece directly.

In the remainder of this section the more complex MenuPieces are intro-
duced.

28

7.8.1 Themes

Common has several themes built in, a theme tells how to paint certain compo-
nents or how to react on certain events. The theme mechanism is described in
more detail in chapter 7.6.

Clients can use a CThemeMenuPiece to quickly create a menu that changes
the theme. The menu tracks any changes in the ThemeMap of the associated
CControl.

If a CThemeMenuPiece is no longer required, then clients should
call its method destroy.

7.8.2 LookAndFeel

Common already supports LookAndFeels, more about this feature can be read
in chapter 7.7. The CLookAndFeelMenuPiece adds a menu that lists all the
available LookAndFeels and allows to exchange them.

If a CLookAndFeelMenuPiece is no longer required, then clients
should call its method destroy.

Each CLookAndFeelMenuPiece will store the selection persis-
tant, assuming that clients call write of CControl or of
ApplicationResourceManager. If this behavior is not whished,
then the LookAndFeelMenuPiece provides similar behavior but
without the persistant storage.

7.8.3 Layout

The layout is the location of all dockables as described in chapter 5.3. The
CLayoutChoiceMenuPiece offers users several actions to work with layouts:

Save : Saves the current layout. If the current layout has not yet a name then
a dialog pops up so the user can enter a name.

Save As : Saves the current layout but always asks the user to enter a new
name for the layout.

Load : Loads a previously saved layout, the current layout gets not stored.

Delete : Deletes a previously saved layout.

7.8.4 List of Dockables

All closeable SincleCDockables known to a CControl can be listed in a
SingleCDockableListMenuPiece. With this menu the user can make the dock-
ables visible or invisible. The menu will update its content automatically as
dockables are added or removed from the CControl.

29

7.8.5 Preferences

Common supports preferences as described in chapter 7.5. The class
CPreferenceMenuPiece adds a single item that opens a dialog with the prefer-
ences of a CControl.

Per default the preference system is disabled. Clients can acivate
the preference system in two ways:

� Call setPreferenceModel of CControl with the preferences
that should be editable.

� Call setup of CPreferenceMenuPiece to optain a new menu
and set the default model (CPreferenceModel) in the same
step.

30

8 Suggestions

Users and developers made a lot of good suggestions, this chapter is an incom-
plete list of them.

Some word of warning: this is an open source project, as such its developer(s)
are not so much interested in selling the framework to as many people as possible,
but on having fun writing something cool. Hence some things that people would
like to have will never be implemented because the developers don’t have fun
doing this stuff.

8.1 Of people using the library

� Question: When showing tabs, would it be possible to show a drop-down
menu when there is not enough space for all the tabs?
Answer: This will be implemented and has high priority.

� Question: Tabs: would it be possible to show them on the left, right,
bottom, top rotate etc...?
Answer: Whilst it would be easy to just put them at another place,
there needs more to be done. This feature requires to upgrade most of
the painting code. In theory the StackDockComponent would already
provide developers with the ability to use their very own tabs (at their own
place), but not to reuse the existing tabs. More settings would be a nice
improvement of the framework and will most certainly be implemented.

� Question: AWT, it needs better support (e.g. things should be painted
over AWT panels as well).
Answer: AWT and Swing don’t work together. This framework is based
on Swing, any attempt to support AWT will result in a lot of ugly hacks.
Also given the fact that AWT isn’t hardly used anymore (except for ap-
plications playing video or rendering 3D scenes) this feature has little to
none chances of getting implemented.

� Question: Could the framework be made available for [insert your fa-
vorite tool here]? E.g. in a Maven repository or for the Netbeans GUI
Builder.
Answer: Making the framework available in/for any special tool imme-
diately yields two new problems. First, as soon as one tool is supported
people will ask for another tool, this will never end... Second, a library
does no get better because it does support many other tools, it does get
better because it has lesser bugs, more settings or features.

� Question: Assume an externalized CDockable, if it gets maximized, could
it be maximized like a JFrame? It would will the entire screen instead of
falling back to the nearest CContentArea.
Answer: This is a good idea. It is not yet clear how to implement this,
but it is among those things that will be done.

8.2 Of the developers

Since the framework has its own forum many questions have been asked, and
most of them were answered as well. From these questions some observations

31

can be made:

� Problems arise both in Core and in Common. The problems are however of
different nature. In Core most problems concern small things, e.g. how to
place the tabs. Most of these problems can be solved with small patches.

The problems related to Common are a lot more serious. Often the answer
is “Common is not able to do that”. And even worse, there is often no small
patch. In short: Common has serious design flaws. Especially Common lacks
the ability to customize components.

Hence most future work must be spent on Common.

� The features now available seem to be sufficient for most applications.
The requests for things that are entirely missing has dropped to almost
zero. There is no need for new features, there is need to improve existing
features.

Putting the pieces together the areas that will make the framework better
are most likely:

� The StateManager, this class is responsible for managing the “extended
mode”. The class has continually grown and has become a major hin-
drance for customization. Currently there is absolutely no abstraction in
this class, it needs to redesigned from scratch. This class is almost as im-
portant as DockController or CControl, its redesign will affect a lot of
other classes. The effect will be, that a) any station can have any function,
or many functions at the same time (e.g. minimizing could be mapped
to a custom component). And b) clients would be able to introduce their
very own extended modes.

� CControl and other classes use a lot of anonymous classes. They need
to be named and made public, and clients need to be able to exchange
them by their own implementations. New factories, also factories with
customizable properties, could help.

� Clients need more control over CDockables, or better their representation
as Dockable. One possibility would be a second series of CDockables that
extend directly DefaultDockable.

� There should also be more observers, clients should be able to register and
react (or cancel) to almost all actions of the framework.

32

A Properties

Core allows clients to set a number of properties, Common adds a few more. All
properties can be set or read by putProperty and getProperty of CControl.
An example:

1 CControl c on t r o l = . . .
2
3 PropertyKey<KeyStroke> key = con t r o l .KEY CLOSE;
4 KeyStroke value = KeyStroke . getKeyStroke (” s h i f t X”) ;
5
6 con t r o l . putProperty (key , va lue) ;

The keys for all properties of Common are stored as constants in CControl.
The complete list:

CControl.KEY MAXIMIZE CHANGE

Type KeyStroke

Default ctrl + m

Usage If pressed then the focused dockables changes between maximized
and normal state.

KEY GOTO MAXIMIZED

Type KeyStroke

Default null

Usage If pressed then the focused dockable becomes maximized.

KEY GOTO NORMALIZED

Type KeyStroke

Default ctrl + n

Usage If pressed then the focused dockable becomes normalized.

KEY GOTO MINIMIZED

Type KeyStroke

Default null

Usage If pressed then the focused dockable becomes minimized.

KEY GOTO EXTERNALIZED

Type KeyStroke

Default ctrl + e

Usage If pressed then the focused dockable becomes externalized.

KEY CLOSE

Type KeyStroke

Default ctrl + F4

Usage If pressed then the focused dockable is made invisible.

33

RESIZE LOCK CONFLICT RESOLVER

Type ConflictResolver<RequestDimension>

Default an instance of DefaultConflictResolver

Usage Tells how to distribute space when two or more dockables have
conflicting size requests. See also chapter 7.3.

34

