
DockingFrames 1.1.1 - Common

Benjamin Sigg

February 26, 2017

1

Contents

1 Introduction 4
1.1 The Framework . 4
1.2 Previous versions . 4

1.2.1 1.0.8 . 4
1.2.2 1.1.0 . 4

1.3 The current version: 1.1.1 . 5

2 Notation 6

3 Basics 7
3.1 Concepts . 7
3.2 Hello World . 7

3.2.1 Setup controller . 8
3.2.2 Setup stations . 8
3.2.3 Setup dockables . 9

4 Foundation 11
4.1 Dockables . 11

4.1.1 SingleCDockable . 12
4.1.2 MultipleCDockable . 12
4.1.3 Visibility . 13
4.1.4 Mode . 15

4.2 Stations . 15
4.2.1 All in one: CContentArea 16
4.2.2 Center area: CGridArea 17
4.2.3 Minimized: CMinimizeArea 18
4.2.4 Grouping Dockables: CWorkingArea 18

5 Locations 19
5.1 For a single dockable: CLocation 19
5.2 For a group of dockables: CGrid 20
5.3 For all dockables: persistent storage 21

5.3.1 Persistant Storage . 22
5.3.2 Dealing with lazy creation and missing dockables 22
5.3.3 Perspectives . 23

5.4 The frameworks viewpoint . 24

6 Actions 26
6.1 CButton . 26
6.2 CCheckBox . 26
6.3 CRadioButton . 27
6.4 CMenu . 27
6.5 CDropDownButton . 27
6.6 CPanelPopup . 28
6.7 CBlank . 28
6.8 System Actions . 28
6.9 Custom Actions . 29

2

7 Other Effects 30
7.1 Color . 30
7.2 Font . 30
7.3 Size . 31

7.3.1 Lock the size . 31
7.3.2 Request a size . 31

7.4 Grouping . 32
7.5 Preferences . 32
7.6 Themes . 33
7.7 LookAndFeel . 34
7.8 Menus . 34

7.8.1 Themes . 36
7.8.2 LookAndFeel . 36
7.8.3 Layout . 36
7.8.4 List of Dockables . 36
7.8.5 Preferences . 37

8 Suggestions, Questions and Remarks 38
8.1 Version 1.0.7 . 38

8.1.1 Of people using the library 38
8.1.2 Of the developers . 39

8.2 Version 1.0.8 . 40
8.2.1 Of people using the library 40
8.2.2 Of the developers . 40

8.3 Version 1.1.0 . 41
8.3.1 Of the people using the framework 41
8.3.2 Of the developers . 41

8.4 Version 1.1.1 . 42
8.4.1 Of the people using the framework 42
8.4.2 Of the developers . 42

A Properties 44
A.1 Client specific properties . 44
A.2 Advanced properties . 44

3

1 Introduction

1.1 The Framework

DockingFrames is an open source Java Swing framework. This framework al-
lows to write applications with floating panels: Components that can be moved
around by the user.

DockingFrames consists of two libraries, Core and Common. Common provides
advanced functionalities that are built on top of Core, it is a wrapper around
Core and requires Core to work.

This guide does not claim to be complete nor that all of its parts are relevant.
It is intended as a starting point to explain basic concepts and to find out which
classes, interfaces and properties are important for developers. This document
only covers Common, Core has its own guide.

You can utilize Common without understanding Core, but knowing at least
some basics about Core will make life much easier.

1.2 Previous versions

1.2.1 1.0.8

Version 1.0.8 is an important milestone: for the first time the framework contains
all the code necessary to handle “real world” applications:

� Due to the new placeholder-mechanism, stored locations are now very
stable and any layout can be recreated anytime.

� Due to the new CLocationModeManager Common is now much flexibler, the
new real-fullscreen-maximization feature for free floating panels already
makes use of this flexibility.

� Tabs are now put in a menu if there is not enough space to show them;
and they can be shown on all sides.

� Applications can prevent a user from closing a Dockable, e.g. they could
ask the user if he would like to save its data before closing the Dockable.

� And there are many more small improvements and bugfixes, have a look
at the transition.pdf document that comes alongside the framework.

Looking at the questions of our forum 1 the framework is now feature com-
plete. So the next version is 1.1.0, it will address the issues mentioned in chapter
8 which could not be addressed in 1.0.8.

1.2.2 1.1.0

In version 1.1.0 it is all about refining existing features and making interaction
more smooth. With version 1.1.0 the framework has reached a mature state.
The most important features of this release are:

1http://forum.byte-welt.de/forumdisplay.php?f=69&langid=2

4

� The end of the “secure” packages. From now on unsigned applets and
webstart applications are supported by the basic classes, the framework
is able to switch between a “restricted mode” and a “free mode” at any
time.

� Almost all properties are now handled by UIProperties (a class from the
Core project), this allows clients to replace almost all properties.

� New listeners like the CDockableLocationListener can keep track of the
visibility of dockables, and in this case “visibility” means whether the user
can actually see the item or not.

� And the “perspective” API allows clients to analyze and modify a layout
without the need to create CStations and CDockables.

1.3 The current version: 1.1.1

There are two sides of version 1.1.1. First, it includes a lot of maintenance,
interfaces were streamlined, minor annoyances got removed, missing features
implemented. Second, the Toolbar Extension was included, a lot new behavior
was implemented to support the extension.

� The Toolbar Extension was added

� The code for drag and drop was overhauled. Stations now consist of layers,
operations are now Objects, there are new points where clients can modify
the drag and drop behavior (like the Inserter).

� There are now animations during drag and drop.

� Added new configuration options, especially for windows (ScreenDockStation)
and for tabs.

5

2 Notation

This document uses various notations.
Any element that can be source code (e.g. a class name) and project names

are written mono-spaced like this: java.lang.String. The package of classes
and interfaces is rarely given since almost no name is used twice. The pack-
ages can be easily found with the help of the generated API documentation
(JavaDoc).

Tips and tricks are listed in boxes.

Important notes and warnings are listed in boxes like this one.

Implementation details, especially lists of class names, are written
in boxes like this.

These boxes explain why something was designed the way it is.
This might either contain some bit of history or an explanation
why some awkward design is not as bad as it first looks.

References to examples illustrating something are marked with
these boxes. All examples are stored in the “tutorial” project
that is downloaded together with the Core and Common library.

6

3 Basics

While Common is a layer atop of Core, Common itself consists of three more
layers: common, facile and support (in their respective packages). The facile
layer mostly contains stand-alone abstractions of classes/interfaces of Core, the
common layer brings these abstractions together. The support layer contains
exactly what it’s name suggest: small, generic classes and methods that do not
fit anywhere but that are really helpful in building up the other layers.

Clients almost exclusively have to make use of the common layer. They can
use the other layers, but it seldomly makes sense to do so.

3.1 Concepts

In the understanding of Common an application consists of one main-window and
maybe several supportive frames and dialogs. The main-window is most times
a JFrame and the application runs as long as this frame is visible. The main-
window consists of several panels, each showing some part of the data. E.g. the
panels of a web-browser could be the “history”, the “bookmarks” and the open
websites.

Common adds an additional layer between panels and main-frame, it separates
them and allows the user to drag & drop panels. For this to happen the client
needs to wrap each panel into a CDockable. These CDockables are put onto a
set of CStations, a controller (of type CControl) manages the look, position,
behavior etc. of all these elements.

Figure 1: The standard application without Common. A main-frame and some
panels that are put onto the main-frame.

3.2 Hello World

A first example containing only three colored panels will introduce the very basic
vocabulary. In depth discussions of the concepts and implementations follow in
the chapters afterwards.

7

Figure 2: An application with Common. The panels are wrapped into dockables.
The dockables are put onto stations which lay on the main-frame. Dockables
can be moved to different stations.

3.2.1 Setup controller

The first step should be to create a CControl. This central controller wires
all the objects of the framework together. A CControl needs to know the root
window of the application, it is used as parent for any dialog that may be opened
(e.g. during a drag & drop operation a dialog may be used to paint the dragged
element). Most applications will be able to just forward their root window to
one of the constructors.

The code to create the controller looks like this:

1 public c lass Example{
2 public stat ic void main (St r ing [] a rgs){
3 JFrame frame = new JFrame () ;
4 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
5
6 CControl c on t r o l = new CControl (frame) ;
7
8 . . .

A simple “hello world” application can be found in the tutorial
project. Simply start the application using either the jar file “tu-
torial.jar” or its class “TutorialMain”. The example has the name
“Guide/Common/Hello World”.

3.2.2 Setup stations

The second step is to setup the layer between main-frame and dockables. There
are different CStations available, for example the CMinimizeArea shows min-
imized CDockables. But most applications will always use the same layout:
some station in the center of the frame shows a grid of CDockables and on
the four edges minimized CDockables are listed. The class CContentArea is a
combination of several CStations offers exactly that layout.

8

There is always a default-CContentArea available, it can be accessed by
calling getContentArea of CControl. If required additional CContentAreas
can be created by the method createContentArea of CControl.

A CContentArea is a JComponent, so its usage is straight forward. Line 10

is the important new line in this code:

1 public c lass Example{
2 public stat ic void main (St r ing [] a rgs){
3 JFrame frame = new JFrame () ;
4
5 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
6
7 CControl c on t r o l = new CControl (frame) ;
8
9 frame . setLayout (new GridLayout (1 , 1)) ;

10 frame . add (con t r o l . getContentArea ()) ;
11
12 . . .

CControl always creates an additional station for handling free
floating CDockables.

3.2.3 Setup dockables

The last step is to set up some CDockables. CDockables are the things that
can be dragged and dropped by the user. A CDockable has a set of properties,
e.g. what text to show as title, whether it can be maximized, what font to use
when focused, and so on.

CDockable is just an interface and clients should always use one of the two
subclasses DefaultSingleCDockable or DefaultMultipleCDockable.Without
going into details: single-dockables exist exactly once, while
multi-dockables can be created and destroyed by the framework anytime.

In the code below new single dockables are created in lines 23-25 and
43-48. They need to be registered at the CControl in lines 27-29, otherwise
they cannot be shown. Optionally the initial location can be set like in line 33

and 36. The initial location is applied in the moment when the dockable gets
visible, it will not have any influence afterwards. So there is no point in setting
the location of the first dockable, since there are no other dockables it gets
all the space anyway and the initial location does not matter afterwards. With
other words: the order in which dockables are made visible is important.

There is a class CGrid which allows to build an initial layout more
easily, more about locations can be found in chapter 5

1 import java . awt . Color ;
2 import java . awt . GridLayout ;
3
4 import javax . swing . JFrame ;
5 import javax . swing . JPanel ;
6
7 import b i b l i o t h ek . gui . dock . common . CControl ;
8 import b i b l i o t h ek . gui . dock . common . CLocation ;

9

9 import b i b l i o t h ek . gui . dock . common . DefaultSingleCDockable ;
10 import b i b l i o t h ek . gui . dock . common . SingleCDockable ;
11
12 public c lass Example{
13 public stat ic void main (St r ing [] a rgs){
14 JFrame frame = new JFrame () ;
15
16 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
17
18 CControl c on t r o l = new CControl (frame) ;
19
20 frame . setLayout (new GridLayout (1 , 1)) ;
21 frame . add (con t r o l . getContentArea ()) ;
22
23 SingleCDockable red = c r ea t e (”Red” , Color .RED) ;
24 SingleCDockable green = cr ea t e (”Green” , Color .GREEN) ;
25 SingleCDockable blue = c r ea t e (”Blue” , Color .BLUE) ;
26
27 con t r o l . addDockable (red) ;
28 con t r o l . addDockable (green) ;
29 con t r o l . addDockable (blue) ;
30
31 red . s e tV i s i b l e (true) ;
32
33 green . s e tLocat i on (CLocation . base () . normalSouth (0 .4)) ;
34 green . s e tV i s i b l e (true) ;
35
36 blue . s e tLocat i on (CLocation . base () . normalEast (0 .3)) ;
37 blue . s e tV i s i b l e (true) ;
38
39 frame . setBounds (20 , 20 , 400 , 400) ;
40 frame . s e tV i s i b l e (true) ;
41 }
42
43 public stat ic SingleCDockable c r e a t e (S t r ing t i t l e , Color c o l o r){
44 JPanel background = new JPanel () ;
45 background . setOpaque (true) ;
46 background . setBackground (c o l o r) ;
47
48 return new DefaultSingleCDockable (t i t l e , t i t l e , background) ;
49 }
50 }

10

4 Foundation

This chapter focuses on the foundation of Common: CControl, the stations and
dockables.

4.1 Dockables

A CDockables is not much more than a set of properties like a “title-icon” and
some Component which is to be shown to the user. A CDockable does not paint
any decorations (like a title), handle any MouseEvents or interacts with the user
in any other way. Such jobs are handled by various manager-objects, factories
and delegates. These objects need to know the CDockables they work with and
they need to be able to store information about them. To accomplish that each
CDockable must be registered at a CControl and is associated with a unique
identifier. Registering a CDockable is possible with one of the addDockable-
methods CControl offers.

There are two types of CDockables, single-dockables and
multi-dockables. The user usually won’t notice any difference between these
two types of dockables:

� Single-dockables are the “tool windows”. There number is limited and
the framework can assume that the client always knows all the possi-
ble “tool windows”. When starting up, the client can either register
all SingleCDockables or the client can register some factories of type
SingleCDockableFactory. Also the client is responsible for storing the
contents of single-dockables.

� Multi-dockables are the “editor windows”. Their numbers are unlimited,
and the framework assumes that the client does not know which editor
windows exist. The client however knows what types of “editor windows”
exist and has to provide factories of type MultipleCDockableFactory.

When a CDockable is created it is without location and it is invisible. Read
chapter 5 to learn about locations and call CDockable.setVisible to show the
CDockable.

The interface CDockable has some awkward methods whose
implementation is already described in the documentation.
CDockable is not intended to be implemented by clients, but to
be used by them. There is a subclass AbstractCDockable which
provides the correct implementation for these awkward methods.
Even in the framework itself no class (except AbstractCDockable)
implements CDockable directly. The only reason for the existence
of CDockable is to provide an abstraction from the implementa-
tion.

11

A CDockable is not a Dockable, but internally references a
Dockable. This Dockable is always of type CommonDockable.
It can be accessed through the method intern of CDockable.
DefaultCDockable offers a method createCommonDockable

which creates a new DefaultCommonDockable. Clients may
override this method and provide their own implementation of
DefaultCommonDockable.

4.1.1 SingleCDockable

A single-dockable is created once, added to the controller and made visible.
It remains in memory until explicitly removed from the CControl or the ap-
plication terminates. Alternatively a SingleCDockableFactory can be used to
lazily create a dockable once it is required.

The interface SingleCDockable represents a single-dockable, the class
DefaultSingleCDockable is a convenient implementation of the interface. The
class offers methods similar to those known from a JFrame, e.g. it has a content-
pane where clients can add some Components.

Examples for single-dockables could be:

� A browser has one panel “history”, the panel is shown on a
single-dockable.

� A view that is most of the time invisible. A single-dockable is created
lazily the first time when the view is shown.

4.1.2 MultipleCDockable

A set of multi-dockables is used if the exact number of instances is not known
prior to runtime. Before a multi-dockable can be used its factory (of type
MultipleCDockableFactory) must be registered at a CControl. The factory
offers methods to store and load the layout of a dockable. Of course there can
be more than one multi-dockable per factory. Once the factory is registered,
clients can add and remove multi-dockables at any time.

The interface describing all multi-dockables is MultipleCDockable, a con-
venient implementation is DefaultMultipleCDockable. This class offers most
of the methods and properties a client should ever need. Implementing a match-
ing MultipleCDockableFactory is easy. There is a method to read and to write
meta-information from or to a MultipleCDockable. Meta-information itself is
a MultipleCDockableLayout which has methods to write or read its content
to a stream (e.g. to file). There are no restrictions to what meta-information
really is.

If a multi-dockable is made invisible, it should be removed from its
CControl. Otherwise old objects fill up memory until the application crashes
with an OutOfMemoryException. Clients either need to remove the dockable

by themselves or they can call setRemoveOnClose(true) to let the element be
removed automatically once it becomes invisible

12

Any multi-dockable which is no longer required must be re-
moved from the CControl, otherwise an OutOfMemoryException

may happen.

Automatical removal is triggered when the dockable becomes in-
visible. This happens if the element does no longer have a root-
parent. If a client makes the parent of a multi-dockable invisible,
the dockable gets marked invisible as well. However, it does not
get removed from its parent. Strange effect happen when the par-
ent is made visible again: most of the decoration of the dockable

is gone and some parts of the framework will ignore its existence.

An example:

1 CControl c on t r o l = . . .
2
3 MultipleCDockableFactory<MyDockable , MyLayoutInformation> = new . . .
4 c on t r o l . addMultipleDockableFactory (”unique id ” , f a c t o ry) ;
5
6 MyDockable dockable = new . . .
7 c on t r o l . addDockable (dockable) ;

Notice that in line 4 a unique identifier needs to be assigned to the factory.

A more sophisticated example can be found in the tutorial project.
The name of the example is “Guide/Common/Editors: Multi-
pleCDockable”.

Examples for multiple-dockables are:

� A text-editor can show many documents at the same time. Each document
is shown in its own dockable.

� A 3D modeling software allows to see the modeled object from different
angles. Each camera is a dockable.

Why the distinction between single- and multi-dockables?
The algorithms to store and load the layout (place and size
of dockables) can either use existing objects or create new
dockables. Using existing objects is preferred because the over-
head of creation can be - at least for complex views - high.
Single- and multi-dockables represent this gap.

4.1.3 Visibility

Visibility has two meanings, “logical visibility“ and “true visibility“. If not
stated otherwise, this document and all documentation always uses “vsibility”
as an alias for “logical visibility”.

13

Logical visibility A dockable is (logical) visible if it is either a child of
a visible root-station or a registered root-station. With other words, logical
visibility means that the dockable is somehow accessible to the user, it does
not even imply that the user actually can see the dockable on the screen.
Visibility can change through a set of events:

� Obviously, calling setVisible of CDockable will change the visibility. If
possible, the location of a CDockable will remembered and reused.

� Adding a CDockable to a station makes the CDockable visible. This may
happen for example if using a CGrid (see chapter 5).

� The user may close a dockable by clicking onto a special close-button.
Clients may call setCloseable to allow or deny a user closing the dock-
able.

There are two listeners to monitor the visibility-state of dockables. Both can
either be added to a CDockable or to a CControl. In the later case all known
dockables are monitored at the same time.

The first listener is the CDockableStateListener, it has a method
visibilityChanged which will be called whenever the visibility changes.

The second listener is the CVetoClosingListener. It receives a
CVetoClosingEvent before and after a set of dockables gets closed. Clients
can call the cancel method to prevent the closing-operation from finishing its
work.

Using the close-button or changing the layout with
CControl.load will always result in a cancelabe
CVetoClosingEvent. However, some methods force the
closing-operation to finish no matter what happens, the method
isCancelable of CVetoClosingEvent will return false in such
a case. Using the low-level methods of Core, one can even close a
dockable without triggering a pre-close event. In such a case an
unexpected CVetoClosingEvent is issued (see isExpected()).
Naturally such an event cannot be canceled.

The close-action can be replaced by calling putAction with the
key ACTION KEY CLOSE of CDockable. The action can be replaced
at any time. Read more about actions in chapter 6.

If the method setLocation of AbstractCDockable is called be-
fore the dockable is made visible, then the dockable is made
visible at the supplied location. Read more about locations in
chapter 5.

True visibility A dockable is truelly visible if the user can actually see the
element on the screen. Clients can use the method isShowing of CDockable to

14

find out whether a dockable is truelly visible. Also the
CDockableLocationListener can help clients to keep track of the true visi-
bility.

It should be noted that logical visibility is required for the framework to
acknowledge true visibility. Also the framework will not take things like “is the
main-frame minimized” into account.

The CDockableLocationListener works asynchronously. Events
not originating in the EventDispatcherThread may let the lis-
tener receive confusing if not plain wrong events.

4.1.4 Mode

If a CDockable is visible then it always is in an extended-mode. The extended
mode tells something about the behaviour of the dockable and where it is
placed. The framework offers four default extended modes:

normalized The normal state of a dockable. It is placed on the main-frame
of the application, but only covers a fraction of the main-frame.

maximized A maximized dockable takes all the space it gets and often covers
other dockables.

minimized A minimzed dockable is not directly visible. Only a button at one
edge of the main-frame indicates the existance of the dockable. If the
button is pressed then the dockable pops up. As soon as it loses focus it
disapears again.

externalized The dockable is on its own window. Per default the window is
an undecorated JDialog and child of the main-frame.

Users can change the extended-mode either by dragging the dockable to
a new place or by clicking some buttons that are visible in the title of each
dockable.

Clients can access and change the extended-mode by calling
getExtendedMode and setExtendedMode of CDockable. A dockable has no
extended-mode if not visible. Furthermore clients can forbid a dockable to go
into some extended-modes, methods like setMaximizable of DefaultCDockable
allow that. Finally clients can exchange the button that must be pressed by the
user by calling putAction of AbstractCDockable. Keys for putAction are de-
clared as String constants in CDockable with names like ACTION KEY MINIMIZE.

Extended-modes are managed by the class CLocationModeManager. You
can read more about that class in chapter 5.4.

4.2 Stations

Stations are needed to place and show CDockables. A station provides the
Component(s) (e.g. a JPanel or a dialog) that are the parents of the dockables.
Stations are represented through the interface CStation.

15

CStations delegate most of their work to some DockStation of Core. Like
dockables a CStation requires a unique identifier. This identifier is used to
persistently store and load layout information.

In general clients can introduce new stations, but a developer
needs a lot of time to proberly implement a station:

1. A working DockStation for the Core project must be writ-
ten.

2. For each extended-mode that matches the stations ability
a CModeArea must be written. The CModeArea handles the
locations (CLocation) of the dockables on the station.

3. It may even be necessary to write a new extended-
mode altogether (which requires an implementation of
CLocationMode).

4. And then there are countless supportive classes that must be
implemented: CLocation, DockableProperty, several fac-
tories, the list goes on...

Conclusion: don’t do this unless you have a lot of time to spare.

The DockStation that is used by a CStation always implements
the interface CommonDockStation.

4.2.1 All in one: CContentArea

The preferred way to create stations is to use a CContentArea. A CContentArea

is not a single CStation but a panel containing many stations. Each content-
area has a center area where dockables are layed out in a grid, and four small
areas at the border where dockables show up when they are minimized.

There is a default-CContentArea present and can be accessed through
getContentArea of CControl. A content-area can later be used like any other
Component:

1 JFrame frame = . . .
2 CControl c on t r o l = . . .
3
4 CContentArea area = con t r o l . getContentArea () ;
5 frame . add (area) ;

If more than one content-area is needed then clients can use
createContentArea of CControl to create additional areas. These additional
areas can later be removed through removeStationContainer. The default
content-area cannot be removed.

16

The default content-area is created lazily. There is no obli-
gation to use or create it, clients can as well directly call
createContentArea or not use them at all.

While CContentArea has a public constructor clients should prefer
to use the factory method createContentArea. In future releases
the constructor might be changed.

To place dockables onto a content-area a CGrid can be of help. With the
method deploy the content of a whole CGrid can be put onto the center area.
More about CGrid and other mechanisms to position elements are listed up in
chapter 5.

4.2.2 Center area: CGridArea

A CGridArea is kind of a lightweight version of CContentArea. A grid-area
contains normalized and maximized dockables. Other than a content-area it
cannot show minimized dockables.

CGridAreas should be created through the factory method createGridArea

of CControl. If it is no longer required it can be removed through the method
removeStation.

Like CContentArea CGridArea has a method deploy to add a whole set of
dockables quickly to the station.

Usage of a grid-area could look like this:

1 JFrame frame = . . .
2 CControl c on t r o l = . . .
3
4 CGridArea cente r = con t r o l . createGridArea (” cente r ”) ;
5 frame . add (cente r . getComponent ()) ;

Notice that in line 5 the method getComponent has to be called. This method
returns the Component on which the station lies.

Some more things that might be interesting:

� A grid-area implements SingleCDockable, hence it can be
a child of another area. Remember that the area must be
manually added to the CControl as dockable.

� The method setMaximizingArea influences of what hap-
pens when a child of the area gets maximized. If true was
given to the method then the child gets maximized within
the boundaries of the grid-area. Otherwise the child might
cover the area or even be transfered to another area.

17

4.2.3 Minimized: CMinimizeArea

Most things that were said for CGridArea hold true for CMinimizeArea as well.
A minimize-area should be created through createMinimizeArea of CControl.

4.2.4 Grouping Dockables: CWorkingArea

The CWorkingArea is a subclass of CGridArea. The difference between them
is, that the property working-area is false for a grid-area, but true for a
CWorkingArea.

Having this property set to true places some constraints on the station:

� Children of this station cannot be moved to another station if that other
station shows dockables in normalized mode. For a user this means
that children can only be minimized, maximized or externalized, but not
dragged away.

� The user cannot drop dockables onto the station unless they are already
children of the station.

� If the station has no children then it appears as grey, empty space which
does not go away.

� Children of a working-area are not stored for temporary layout. For the
user this means that applying a layout does neither affect the station, nor
dockables that can be put onto the station.

CWorkingAreas can be used to display a set documents. For example in an
IDE (like Eclipse or Netbeans) each source file would get its own CDockable

which then is put onto the working-area.

The children of a CWorkingArea are often good candidates for
being MultipleCDockables.

18

5 Locations

Location means position and size of a dockable. A location can be relative to
some parent of a dockable or it can be fix.

5.1 For a single dockable: CLocation

The location of a single dockable is represented by a CLocation. The method
getBaseLocation of CDockable gets the current location and the method
setLocation changes the current location.

Most subclasses of CLocation offer one or more methods to obtain new lo-
cations. An example: CGridAreaLocation offers the method north. While
CGridAreaLocation represents just some CGridArea, the location obtained
through north represents the upper half of the grid-area. Clients can chain
together method calls to create locations:

1 CGridAreaLocation root = . . .
2 CDockable dockable = . . .
3
4 CLocation l o c a t i o n = root . north (0 .5) . west (0 .5) . s tack (2) ;
5 dockable . s e tLocat i on (l o c a t i o n) ;

The chain of calls in line 4 creates a location pointing to the upper left quarter
of some grid-area. Assuming there is a stack of dockables in that quarter,
the location points to the third entry of that stack. In line 5 the location of
dockable is set, the framework will try to set dockable at the exact location
but cannot make any guarantees (e.g. if there is no stack in the upper left
quarter, then framework cannot magically invent one).

To create a root-location clients can call one of the static factory methods
of CLocation or directly instantiate the location. Calling the factory methods
of CLocation is preferred.

Setting the location of a dockable a to the location of another dockable b

will move away b from its position. As an example:

1 CDockable a = . . .
2 CDockable b = . . .
3
4 CLocation l o c a t i o n = b . getBaseLocat ion () ;
5 a . s e tLocat i on (l o c a t i o n) ;

If b should remain at its place then the method aside of CLocation can
create a location that is near to b, but not exactly b’s position:

5 a . s e tLocat i on (l o c a t i o n . a s i d e ()) ;

CLocation is an abstraction from DockableProperty. While each
DockableProperty has its own API and concepts, CLocations
unify usage by providing the chain-concept. The chain-concept
allows some typesafety and should reduce the amount of wrongly
put together locations.

19

CLocations describe only the current location of a dockable,
they are not useful for any long-term storage. CControl already
stores the location of each dockable and it uses some very com-
plex constructs to ensure that the locations remain useful even if
dockables are missing or moved around. Clients should not store
locations themselves.

5.2 For a group of dockables: CGrid

Sometimes it is necessary to set the position of several dockables at once. For
example when the application starts up a default layout could be created. If
dockables are minimized or externalized the position can simply be set with
CLocations. If dockables are shown normalized on a grid-area, a working-
area, or the center of a CContentArea then things get more complex. Using
CLocation would require a precise order in which to add the dockables, and
some awkward coordinates to make sure they are shifted at the right place when
more dockables become visible.

CGrid is a class that collects dockables and their boundaries. All this infor-
mation can then be put onto a grid-like areas in one command. Furthermore a
CGrid can also automatically register dockables at a CControl. An example:

1 CControl c on t r o l = . . .
2
3 SingleCDockable s i n g l e = new . . .
4 MultipleCDockable mult i = new . . .
5
6 CGrid g r id = new CGrid (con t r o l) ;
7
8 g r id . add (0 , 0 , 1 , 1 , s i n g l e) ;
9 g r id . add (0 , 1 , 1 , 2 , mult i) ;

10
11 CContentArea content = con t r o l . getContentArea () ;
12 content . deploy (g r id) ;

The CGrid created in line 6 will call the add-methods of control (line 1) with
any dockable that is given to it. In lines 8,9 two dockables are put onto the
grid. The numbers are the boundaries of the dockables. In line 12 the contents
of the grid are put onto content. The dockables single and multi will be
arranged such that multi has twice the size of single.

Boundaries are relative to each other, there is no minimal or maximal value
for a coordinate or size. CGrid is able to handle gaps and overlaps, but such
defections might yield awkward layouts.

Make sure not to add a dockable twice to a CControl. If using
a CGrid the add method of CControl must not be called.
Also note that if the constructor of CGrid is called with null,
then the CGrid will not add dockables to any CControl.

20

Dockables can also be grouped in a stack by CGrid. Any two
dockables with the same boundaries are grouped. The add

method uses a vararg-argument, more than just one dockable

can be placed with the same boundaries this way.

Internally CGrid uses a SplitDockGrid. SplitDockGrid con-
tains an algorithm that creates a SplitDockTree. This tree has
dockables as leafs and relations between dockables are modeled
as nodes. A SplitDockTree can be used by a SplitDockStation

to build up its layout.

5.3 For all dockables: persistent storage

The “layout” is the set of all locations, even including invisible dockables.
CControl supports the storage and replacement of layouts automatically.
Clients only need to provide some factories for their custom dockables. A
layout does not have direct references to any dockable, it is completely inde-
pendent of gui-components.

There are four important methods in CControl used to interact with layouts:

� save - stores the current layout. The method requires a String argument
that is used as key for the layout. If a key is alread used then the old
layout gets replaced with the new one.

� load - is the counterpart to save. It loads a layout that was stored earlier.

� delete - deletes a layout.

� layouts - returns all the keys that are in use for layouts.

The class CLayoutChoiceMenuPiece can build some JMenuItems
that allow the user to save, load and delete layouts at any time.
More about MenuPieces can be found in chapter 7.8.

21

Layouts are divided into two subsets: “entry” and “full” layouts.
An entry-layout does not store the location of any dockable that
is associated with a working-area. A full-layout stores all loca-
tions. The method save always uses entry-layouts and a full-
layout is only used when the applications properties are stored
persistantly in a file.
Working-areas are intended to show some documents that are
only temporarely available. Assuming that each dockable on
a working-area represents one such document it makes perfectly
sense not to replace them just because the user chooses another
layout. Changing them would mean to close some documents and
load other documents, and that is certainly not the behaviour the
user would expect.

The client is responsible to store the contents of any
single-dockable.

5.3.1 Persistant Storage

Common uses a class called ApplicationResourceManager to store its properties.
Among other things all layout information is stored in this resource-manager.
Normally any information in the resource-manager gets lost once the application
shuts down. But clients can tell the resource-manager to write its contents into
a file. Either they call getResources of CControl and then one of the many
methods that start with “write” or they use directly CControl. An example:

1 F i l e f i l e = new F i l e (” layout . data”) ;
2
3 // wri te proper t i e s
4 con t r o l . wr i t e (f i l e) ;
5
6 // read proper t i e s
7 con t r o l . read (f i l e) ;

5.3.2 Dealing with lazy creation and missing dockables

While MultipleCDockables are created only when they are needed, Common

assumes that SingleCDockables are always present. However this assump-
tion would require to create components that might never be shown. In order
to solve the problem SingleCDockableFactory was introduced. If a missing
single-dockable is required the factories method createBackup is called. As-
suming the factory returns not null then the new dockable is properly added
to CControl and made visible.

SingleCDockableFactorys need to be registered at the CControl using the
method addSingleDockableFactory. They can also be removed using the
method removeSingleDockableFactory.

22

If a dockable is removed from a CControl then normally all its
associated location information is deleted. If however a factory
with the same id as the dockables id is registered, then the lo-
cation information remains. If another dockable with the same
id is later registered, then this new dockable inherits all settings
from the old one.

CControls behavior for missing dockables can be fine tuned with
a MissingCDockableStrategy.

5.3.3 Perspectives

Layout information is stored in various formats: the Dockables and
DockStations is one format, an xml-file could be another format. There is
a special intermediate format, every format can be converted into this inter-
mediate format, and the intermediate format can be converted to any other
format.

Perspectives are yet another format of the layout. Perspectives are
leightweight and can be easily modified by clients. They are an ideal tool to set
up the layout of an application during startup. In order to access perspectives
a CControl must be around, like in this example:

1 CControl c on t r o l = . . .
2
3 // access ing a se t of pe r spec t i v e s
4 CContro lPerspect ives p e r s p e c t i v e s = con t r o l . g e tPe r sp e c t i v e s () ;
5
6 // creat ing a new perspect ive , t h i s method ac tua l l y copies some
7 // proper t i e s from ” contro l ”
8 CPerspect ive p e r sp e c t i v e = pe r s p e c t i v e s . c r e a t ePe r sp e c t i v e () ;
9

10 . . . // s e t t i n g up the layout
11
12 // apply ing the new perspec t i ve
13 p e r s p e c t i v e s . s e tPe r sp e c t i v e (pe r spec t ive , true) ;

A CPerspective offers methods to access various CStationPerspectives
and add CDockablePerspectives to them.

23

In the example project, in “Guide/Common”, there are several
examples showing how to use perspectives:

Perspectives (Introduction) Is a very simple hello-world style
application with several Dockables that are placed through
the perspective API.

Perspectives (Multiple Dockables) Shows how to access and
set up MultipleCDockables and CWorkingAreas.

Perspectives (History) Shows how the location history can be
modified with the perspective API.

5.4 The frameworks viewpoint

Locations are handled by the CLocationModeManager. Clients may never have
any contact with this class, but it is of such importance for the inner workings
of DockingFrames that it deserves a chapter in this document.

The CLocationModeManager contains a list of CLocationModes where each
CLocationMode provides the code for handling one extended-mode (like
ExtendedMode.MAXIMIZED). The manager also contains a map which stores the
location of each dockable for each mode. When the user clicks on a button like
“minimize”, the location for the affected dockable is read from the map and
given to the the apply method of the appropriate CLocationMode.

Each of the existing CLocationModes contains a set of StationModeAreas
where each StationModeArea represents a DockStation. If apply is called,
the call is forwarded to the best matching StationModeArea. The area then
converts the properties to a format understandable by its DockStation and
drops the dockable.

Sounds easy enough, but some some stations can represent more than one
extended-mode. For example the SplitDockStation (or CGridArea,
CWorkingArea) can show “normalized” and “maximized” children. And if the
user drops a “normalized” dockable onto a station which shows a “maxi-
mized” dockable, then the “maximized” dockable needs to be reset first. So a
SplitDockStation needs two StationModeAreas which are assigned to differ-
ent CLocationModes, and these areas must know of a pending change befor it
happens. There is a set of tools to handle these jobs:

� Any change of location or mode runs in a transaction. During a trans-
action most listeners of the framework are not informed about changes.
This prevents code from the framwork or the client to interrupt the work.
Stalled events are fired once the transaction is over and only if they are
still valid. The runTransaction methods of the manager do all of this.

� LocationModeListeners can be added to any mode. Before an apply

method is executed the listeners are called. Other modes may act before
or cancel any action.

� And the ChangeSet can be used to store any dockable whose properties
need an update.

24

The CLocationModeManager and its supportive classes do more: they decide
which buttons to show on dockables, e.g. whether a “minimize” button is
necessary. They decide what to do if the user double-clicks on a title. They
decide which element to maximize (the whole stack or just a single dockable).
And they offer a lot of methods to query and change the current position of
dockables.

The whole mechanism around CLocationModeManager consists of
roughly 50 classes and interfaces, some of them quite small, others
quite large. It was introduced in version 1.0.8 as replacement of
the outdated StateManager. Compared to the old mechanism
the new one is much more complex and requires considerable more
code. But it is also more flexible, e.g. adding new implementations
of DockStation or handling additional extended-modes was not
possible with the old mechanism.

25

6 Actions

Actions are small graphical components associated with a dockable. They can
show up at different locations, e.g. as buttons in the title. An action is an

Figure 3: A set of actions on a dockable. The actions are the icons within the
red oval.

instance of CAction. Common provides several subclasses of CAction. CActions
can be added to any DefaultCDockable through the method addAction. An
example:

1 DefaultCDockable dockable = . . .
2 CAction ac t i on = new . . .
3
4 dockable . addAction (ac t i on)

To separate a group actions from another group a separator is needed. The
method addSeparator of DefaultCDockable adds such a separator. Separators
are specialized CActions.

An action is not a Component, it can appear at the same time at different
locations with different views. For example an action can be seen as button in
a title and at the same time as menu-item in a popup-menu.

6.1 CButton

CButtons are actions that can be triggered many times by the user and will
always behave the same way. CButton itselfs is much like JButtons and offer
many methods that can also be found in JButtons. E.g. clients can add an
ActionListener to the CButton in order to be informed when the user clicks
onto the button.

6.2 CCheckBox

This action has a state, it is either selected or not selected (true or false).
Whenever the user triggers the action the state changes. CCheckBox is abstract
and clients must create a subclass, the method changed will be called when the
state changes. An example:

1 public c lass SomeAction extends CCheckBox{
2 public SomeAction () {
3 setText (”Something”) ;
4 }
5
6 protected void ac t i on () {
7 boolean s e l e c t e d = i s S e l e c t e d () ;
8 . . .

26

9 }
10 }

6.3 CRadioButton

In most aspects the CRadioButton behaves like a CCheckBox. CRadioButtons
are grouped together, the user can select only one of the buttons in a group. A
group is realized with the help of the class CRadioGroup:

1 CRadioButton buttonA = . . .
2 CRadioButton buttonB = . . .
3
4 CRadioGroup group = new CRadioGroup () ;
5
6 group . add (buttonA) ;
7 group . add (buttonB) ;

6.4 CMenu

A CMenu is a list of CActions. The user can open the CMenu and it will show a
popup-menu with its actions. Clients can add and remove actions from a CMenu

through methods like add, insert, or remove.

Figure 4: An open CMenu. The action itself is at the top within the red circle.
Its menu consists of CButtons and a separator, the menu is within the blue oval.

6.5 CDropDownButton

A CDropDownButton consists of two buttons. One of them opens a menu, the
other one triggers the last selected item of that menu again.

The behavior of CDropDownButton can be influenced through its items. This
requires that the items are subclasses of CDropDownItem. CButton, CCheckBox
and CRadioButton fulfill this requirement. There are three properties to set:

� dropDownSelectable - whether the action can be selected at all. If not,
then clicking onto the item might trigger it, but the drop-down-buttons
icon and text will remain unchanged.

27

Figure 5: A CDropDownButton within a red circle.

� dropDownTriggerableNotSelected - if not set, then this item cannot be
triggered if not selected. As a consequence the item must be clicked twice
until it reacts.

� dropDownTriggerableSelected - if not set, then this item cannot be
triggered if selected. It still can be triggered by opening the menu and
then clicking onto the item.

If a CDropDownButton cannot trigger its selected item, then it just opens its
menu.

6.6 CPanelPopup

Basically a button that opens a popup with an arbitrary component as content.
The popup appears at the same location the menu of a CMenu would appear. In a
menu a CPanelPopup appears as menu-item and opens the popup in the middle
of the CDockable to which it is attached. The class provides methods for clients
to modify its behavior, e.g. to replace the popup by another implementation.

6.7 CBlank

This action is not visible and does nothing. It can be used as placeholder where
a null reference would cause problems, e.g. because null is sometimes replaced
by some default value.

6.8 System Actions

Common adds a number of actions to any CDockable, e.g.: the close-button.
These actions are deeply hidden within the system and cannot be accessed.
There is however a mechanism to replace them with custom actions. Each
CDockable has a method getAction which is called before a system action is
put in place. If this method does return anything else than null then the system
action gets replaced. AbstractCDockable offers the method putAction to set
these replacements. An example:

1 SingleCDockable dockable = . . .
2 CAction replacement = . . .
3
4 dockable . putAction (CDockable .ACTION KEY MAXIMIZE, replacement) ;

28

In this example whenever the maximize-action of dockable should be visible,
replacement is shown. This feature should of course be treated with respect,
changing the behavior of an action can confuse the user a lot.

The class CCloseAction is an action that closes any dockable

on which it is shown. The subclasses of CExtendedModeAction

change the extended-mode of their dockables.

6.9 Custom Actions

Clients are free to write their custom actions. They need to implement a new
CommonDockAction and a subclass of CAction. The subclass can give its super-
class an instance of the custom DockAction or call init to set the action. Please
refere to the guide for Core to find out how to implement a DockAction.

29

7 Other Effects

Common allows to customize some behavior and components. Understanding
these features is not necessary to work with Common, but impressive effects can
be built with them. This chapter will, without any specific order, introduce
some of these features.

7.1 Color

Every dockable has a ColorMap. This map contains colors that are used in the
graphical user interface. Normally the map is empty and some default colors
are used. If a client puts some colors into the ColorMap, then the user interface
is immediatelly updated using the new colors. ColorMap itself contains a set of
keys that can be used, as an example:

1 CDockable dockable = . . .
2 ColorMap map = dockable . ge tCo lo r s () ;
3 map . s e tCo lo r (ColorMap .COLORKEYTABBACKGROUND, Color .RED) ;

Some keys are specialications of other keys. For example
COLOR KEY TAB BACKGROUND changes the background of tabs,
while COLOR KEY TAB BACKGROUND FOCUSED changes the back-
ground of focused tabs only. A specialized key overrides the value
provided by a general key.

Colors require the support of a DockTheme that applies them.
Only themes of Common do that, the original themes of Core will
render the ColorMap useless. In Common clients should interact
with themes only through the ThemeMap, this map will make sure
that only themes are used that support colors.
Also note that some Components, like the JTabbedPane, and some
LookAndFeels do not support custom colors.

7.2 Font

Exactly like the color, fonts of dockables can be exchanged. Each dockable

has a FontMap which contains FontModifiers. FontModifiers can change
some property of a font, an example:

1 CDockable dockable ;
2 FontMap fon t s = dockable . getFonts () ;
3
4 Gener icFontModi f ier i t a l i c = new Gener icFontModi f ier () ;
5 i t a l i c . s e t I t a l i c (Gener icFontModi f ier . Modify .ON) ;
6 f on t s . setFont (FontMap .FONT KEY TAB, i t a l i c) ;

The FontModifier italic will change the italic flag of the original font to true

(line 5).

30

Some Components, like the JTabbedPane, and some LookAndFeels
do not support custom fonts. In this case the settings are just
ignored.

7.3 Size

Every dockable has a width and a height. Some dockables are flexible in their
size, others would be better of with a constant size. There is a feature to lock
the size and a feature to set a specific size.

7.3.1 Lock the size

Every AbstractCDockable has the method setResizeLocked. If the size is
locked then the framework will try not to change the size of the dockable. There
are also methods to lock only the width or the height
(setResizeLockedHorizontally and setResizeLockedVertically).

Locking the size does not prevent the user from manually resiz-
ing the dockable. And sometimes a station needs to violate the
locking as well, e.g.: when a grid-area has only one child the size
cannot be choosen freely.

7.3.2 Request a size

It is also possible for client code to request a specific size for one or many
CDockables. Clients need to call setResizeRequest and maybe
handleResizeRequest like in the example below:

1 CControl c on t r o l = . . .
2
3 DefaultCDockable a = . . .
4 DefaultCDockable b = . . .
5
6 a . se tRes i zeRequest (new Dimension (200 , 300) , fa l se) ;
7 b . se tRes i zeRequest (new RequestDimension (500 , true) , fa l se) ;
8
9 con t r o l . handleRes izeRequests () ;

In this example two resize requests are handled at the same time. In line 6

the resize request of a is set to 200, 300, the argument false tells a not yet to
process the request. In line 7 the resize request of b is set, b should have the
width 500 but should not care about its height. Finally in line 9 all the requests
are processed together. If the second parameter in line 7 would be true instead
of false, then line 9 would not be necessary.

Not processing a request directly, but collect them, allows requests
to interact with each other. Assume there are three dockables in
a line and the task is to resize the two elements at the begining
and the end of the line. If one resize request is handled before the
other, then the second request might destroy the work of the first
one.

31

Every object can add a ResizeRequestListener to CControl,
this listener will be called when resize requests need to be pro-
cessed. Most of the CStations add such a listener. The only
station on which requests can have complex interactions is the
CGridArea (and the CContentArea). With the PropertyKey

RESIZE LOCK CONFLICT RESOLVER, defined in CControl, clients
can set the algorithm that is used to solve contradictions in a
CGridArea.

7.4 Grouping

If the user clicks on one of the extended-mode actions (like “maximize”) of a
CDockable, then the CGroupBehavior will be asked to define the actual sequence
of events to happen. Some CGroupBehaviors might decide to move around entire
stacks of CDockables, others might decide to move just one CDockable.

Clients may change the behavior by calling CControl.setGroupBehavior

like in this example:

1 CControl c on t r o l = . . .
2 CGroupBehavior behaviour = . . .
3
4 con t r o l . setGroupBehavior (behavior) ;

In line 2 a custom behavior is declared, in line 4 the behavior is set.

The old CMaximizingBehavior has been replaced by the
CGroupBehavior. Two default behaviors are available and de-
fined as constants in the CGroupBehavior itself.

7.5 Preferences

Common allows users to set some properties like the keys that need to be pressed
in order to maximize a dockable (ctrl+m). Normally this mechanism is deac-
tivated and clients first need to activate it:

1 CControl c on t r o l = . . .
2 PreferenceModel p r e f e r e n c e s = new CPreferenceModel (c on t r o l) ;
3
4 con t r o l . s e tPre fe renceMode l (p r e f e r e n c e s) ;

This piece of code activates the preference mechanism. In line 2 the set of
preferences that can be changed by the user is set up, a CPreferenceModel

is often the best choice. Then in line 4 the model is connected to control.
Calling setPreferenceModel will activate persistant storage for model and also
immediatelly load values into the model.

The model can later be presented to the user:

1 CControl c on t r o l = . . .
2 PreferenceModel model = con t r o l . getPre ferenceModel () ;
3 Component owner = con t r o l . i n t e rn () . g e tCon t r o l l e r () . findRootWindow () ;
4
5 i f (model instanceof PreferenceTreeModel){
6 PreferenceTreeModel t r e e = (PreferenceTreeModel)model ;
7 Pre f e renceTreeDia log . openDialog (tree , owner) ;
8 }

32

9 else {
10 Pre f e r enceDia log . openDialog (model , owner) ;
11 }

In line 3 the root window of the application is searched, it is used as parent
window for any dialog that needs to be opened. In line 7 or line 10 a dialog is
opened that shows the preferences. There are two different dialogs, one with a
tree at the left side to make select a subset of preferences, one without tree.

There are different preference models. CPreferenceModel con-
tains all possible preferences for Common, it consists of four other
models:

� CKeyStrokePreferenceModel: The different key combina-
tions that, when pressed, initiate some action.

� CLayoutPreferenceModel: General settings for the themes.

� BubbleThemePreferenceModel: Settings affecting the
eclipse-theme.

� EclipseThemePreferenceModel: Settigns affecting the
bubble-theme.

Internally each item of the model is a Preference, clients can put
together their own model.

The class CPreferenceMenuPiece can act as a menu-item for
opening the preference-dialog, read more about menus in chap-
ter 7.8.

7.6 Themes

A theme sets look and behavior of DockingFrames. Themes are managed by
the ThemeMap, this map contains Strings as keys and ThemeFactorys as values.
ThemeMap is however more than just a map, it also tells which theme is currently
selected. Clients can call select to change the selection.

In the current version 5 themes are always installed per default, the keys of
these 5 themes are stored as constants directly in ThemeMap.

Working with the ThemeMap could look like this:

1 CControl c on t r o l = . . .
2 ThemeMap themes = con t r o l . getThemes () ;
3
4 themes . s e l e c t (ThemeMap .KEY FLAT THEME) ;
5
6 themes . add (”custom” , new CustomFactory ()) ;

In line 2 the map is accessed. In line 4 one of the preinstalled themes is selected,
this theme is applied to control. In line 6 a factory for a custom theme is
installed.

33

A theme has much freedom in how to present the dockables. But
Common allows clients to set color and font of various elements asso-
ciated with a CDockable. The standard themes of Core would not
respect these settings, hence Common needs some modified themes.
The ThemeMap is an attempt to hide this ugly fact from developers
and to make sure they don’t use the wrong theme.

7.7 LookAndFeel

LookAndFeel tells a Swing application how to paint things and how to behave.
The relation between LookAndFeel and Swing is like the relation between theme
and DockingFrames. The LookAndFeel can be changed while the application
runs, but the method updateUI must be called for each and every existing
JComponent by the client itself.

Of course, clients are free to implement such a function. DockingFrames

will detect a change of the LookAndFeel and update itself where necessary, but
it will not update the JComponents.

But Common includes better support for LookAndFeel changes. The class
LookAndFeelList provides a list of all available LookAndFeels and allows to
change the current selection. Per default the list does not exist but clients can
easily create one:

1 LookAndFeelList l i s t = LookAndFeelList . g e tDe f au l tL i s t () ;
2
3 CControl c on t r o l = . . .
4
5 ComponentCollector c o l l e c t o r =
6 new Dockab leCo l l ec tor (c on t r o l . i n t e rn ()) ;
7 l i s t . addComponentCollector (c o l l e c t o r) ;
8
9 XElement x s e t t i n g s = . . .

10 l i s t . readXML(x s e t t i n g s) ;

In line 1 a LookAndFeelList is accessed, calling getDefaultList will create
it. In order to automatically update JComponents they need to be connected to
the list. This is done with the help of ComponentCollectors. If for example
a CControl like control (line 3) is given, then the class DockableCollector

(lines 5-7) is able to collect all components related to it. This includes all
dockables but also the root-window of the application. The LookAndFeelList

can store its state persistantly and later read the state, for example in line 9

some earlier setting is accessed and in line 10 the settings are applied.

If using a CLookAndFeelMenuPiece then everything in the exam-
ple snippets gets done automatically. Read chapter 7.8.2 to learn
more about this menu.

7.8 Menus

Most Swing applications use menus (like in figure 6). DockingFrames contains
a few actions that fit nicely into a menu, for example store and load a layout.

For a given option the number of required menu-items may change during
runtime, e.g. every stored layout requires one item. But developers may not

34

want to add one JMenu for each option of DF. To resolve this problem Common

introduces a very small framework that allows the management of dynamically
growing or shrinking menus.

Figure 6: Some menus.

The most important class of the menu-framework is the MenuPiece. Basi-
cally a MenuPiece is a list of Components which informs observers if it changes
its size. There are around 15 subclasses of MenuPiece, they allow to compose
many pieces to one big piece or have more specific duties like providing the
stored layouts.

An incomplete list of composing MenuPieces contains:

RootMenuPiece : Represents a whole JMenu.

SubMenuPiece : A wrapper around a RootMenuPiece allowing it to act like a
submenu.

NodeMenuPiece : Just a list of MenuPieces that act like one big piece.

SeparatingMenuPiece : A wrapper around another MenuPiece introducing
separators at the top and/or bottom.

Other MenuPieces that might be interesting are:

BaseMenuPiece : A good base class for custom MenuPieces, al-
lows to add or remove Components directly.

FreeMenuPiece : A piece that does not add children by itself
but has public methods which can be invoked by clients to
modify the piece directly.

In the remainder of this section the more complex MenuPieces are intro-
duced.

35

7.8.1 Themes

Common has several themes built in, a theme tells how to paint certain compo-
nents or how to react on certain events. The theme mechanism is described in
more detail in chapter 7.6.

Clients can use a CThemeMenuPiece to quickly create a menu that changes
the theme. The menu tracks any changes in the ThemeMap of the associated
CControl.

If a CThemeMenuPiece is no longer required, then clients should
call its method destroy.

7.8.2 LookAndFeel

Common already supports LookAndFeels, more about this feature can be read
in chapter 7.7. The CLookAndFeelMenuPiece adds a menu that lists all the
available LookAndFeels and allows to exchange them.

If a CLookAndFeelMenuPiece is no longer required, then clients
should call its method destroy.

Each CLookAndFeelMenuPiece will store the selection persis-
tant, assuming that clients call write of CControl or of
ApplicationResourceManager. If this behavior is not whished,
then the LookAndFeelMenuPiece provides similar behavior but
without the persistant storage.

7.8.3 Layout

The layout is the location of all dockables as described in chapter 5.3. The
CLayoutChoiceMenuPiece offers users several actions to work with layouts:

Save : Saves the current layout. If the current layout has not yet a name then
a dialog pops up so the user can enter a name.

Save As : Saves the current layout but always asks the user to enter a new
name for the layout.

Load : Loads a previously saved layout, the current layout gets not stored.

Delete : Deletes a previously saved layout.

7.8.4 List of Dockables

All closeable SingleCDockables known to a CControl can be listed in a
SingleCDockableListMenuPiece. With this menu the user can make the
dockables visible or invisible. The menu will update its content automatically
as dockables are added or removed from the CControl.

36

7.8.5 Preferences

Common supports preferences as described in chapter 7.5. The class
CPreferenceMenuPiece adds a single item that opens a dialog with the prefer-
ences of a CControl.

Per default the preference system is disabled. Clients can acivate
the preference system in two ways:

� Call setPreferenceModel of CControl with the preferences
that should be editable.

� Call setup of CPreferenceMenuPiece to obtain a new menu
and set the default model (CPreferenceModel) in the same
step.

37

8 Suggestions, Questions and Remarks

Users and developers made a lot of good suggestions, this chapter is an incom-
plete list of them.

Some word of warning: this is an open source project, as such its developer(s)
are not so much interested in selling the framework to as many people as possible,
but on having fun writing something cool. Hence some things that people would
like to have will never be implemented because the developers don’t have fun
doing this stuff.

8.1 Version 1.0.7

8.1.1 Of people using the library

� Question: When showing tabs, would it be possible to show a drop-down
menu when there is not enough space for all the tabs?
Answer 1.0.7: This will be implemented and has high priority.
Answer 1.0.8: The TabLayoutManager is responsible for deciding which
actions to place in the overflow-menu and which not. Clients may use
TabPane.LAYOUT MANAGER to set their own implementation.

� Question: Tabs: would it be possible to show them on the left, right,
bottom, top rotate etc...?
Answer 1.0.7: Whilst it would be easy to just put them at another
place, there needs more to be done. This feature requires to upgrade most
of the painting code. In theory the StackDockComponent would already
provide developers with the ability to use their very own tabs (at their own
place), but not to reuse the existing tabs. More settings would be a nice
improvement of the framework and will most certainly be implemented.
Answer 1.0.8: Use StackDockStation.TAB PLACEMENT to set the side
on which to show tabs.

� Question: AWT, it needs better support (e.g. things should be painted
over AWT panels as well).
Answer: AWT and Swing don’t work together. This framework is based
on Swing, any attempt to support AWT will result in a lot of ugly hacks.
Also given the fact that AWT isn’t hardly used anymore (except for ap-
plications playing video or rendering 3D scenes) this feature has little to
none chances of getting implemented.

� Question: Could the framework be made available for [insert your fa-
vorite tool here]? E.g. in a Maven repository or for the Netbeans GUI
Builder.
Answer 1.0.7: Making the framework available in/for any special tool
immediately yields two new problems. First, as soon as one tool is sup-
ported people will ask for another tool, this will never end... Second, a
library does no get better because it does support many other tools, it
does get better because it has lesser bugs, more settings or features.
Answer 1.0.8: Andrei Pozolotin set up a Maven repository, for other
tools the answer remains the same.

38

� Question: Assume an externalized CDockable, if it gets maximized, could
it be maximized like a JFrame? It would will the entire screen instead of
falling back to the nearest CContentArea.
Answer 1.0.7: This is a good idea. It is not yet clear how to implement
this, but it is among those things that will be done.
Answer 1.0.8: That is now the default behavior. With
ScreenDockStation.FULL SCREEN STRATEGY clients can influence what
exactly “full screen” means.

8.1.2 Of the developers

Since the framework has its own forum many questions have been asked, and
most of them were answered as well. From these questions some observations
can be made:

� Problems arise both in Core and in Common. The problems are however of
different nature. In Core most problems concern small things, e.g. how to
place the tabs. Most of these problems can be solved with small patches.

The problems related to Common are a lot more serious. Often the answer
is “Common is not able to do that”. And even worse, there is often no small
patch. In short: Common has serious design flaws. Especially Common lacks
the ability to customize components.

Hence most future work must be spent on Common.

� The features now available seem to be sufficient for most applications.
The requests for things that are entirely missing has dropped to almost
zero. There is no need for new features, there is need to improve existing
features.

Putting the pieces together the areas that will make the framework better
are most likely:

� The StateManager, this class is responsible for managing the “extended
mode”. The class has continually grown and has become a major hin-
drance for customization. Currently there is absolutely no abstraction in
this class, it needs to redesigned from scratch. This class is almost as im-
portant as DockController or CControl, its redesign will affect a lot of
other classes. The effect will be, that a) any station can have any function,
or many functions at the same time (e.g. minimizing could be mapped
to a custom component). And b) clients would be able to introduce their
very own extended modes.

� CControl and other classes use a lot of anonymous classes. They need
to be named and made public, and clients need to be able to exchange
them by their own implementations. New factories, also factories with
customizable properties, could help.

� Clients need more control over CDockables, or better their representation
as Dockable. One possibility would be a second series of CDockables that
extend directly DefaultDockable.

� There should also be more observers, clients should be able to register and
react (or cancel) to almost all actions of the framework.

39

8.2 Version 1.0.8

8.2.1 Of people using the library

� Question: Will there be support for Maven?
Answer: Andrei Pozolotin created a maven repository. You can find
information about it on http://code.google.com/p/docking-frames/.

� Question: The guides and documentation are not helpful: they are in-
complete, do not start with the basics and do not build upon each other.
Answer: It is completely understandable that starting with this frame-
work is not that easy. The guides are intended to provide background
information about tasks that often need to be done. There clearly is a
gap between background information and practice. To close the gap a set
of example applications will be included in the next version (some of them
are already packed together with this version). These examples will be
executable.

� Question: The code snippets in the guides are too small.
Answer: In future releases there will be an example in the example-
project for most snippets.

� Question: How do I create a layout (a “perspective”).
Answer: If the placeholder mechanism would contain some public API,
then this could be easily solved. Unfortunatelly such an API does not yet
exist, but is on the todo-list.

8.2.2 Of the developers

Some of the issues of 1.0.7 have been addressed. Mostly the StateManager got
replaced by the CLocationModeManager. Customization still is an issue.

� There is an annotation Todo, Interfaces, classes or methods that need to
be changed are marked with this annotation.

� People often would like to set a new border or to slighly modify the current
DockTheme. Currently such a task requires people to write several new
classes. This is far from intuitive and not easy to accomplish, especially if
someone does not know where to start. In order to solve the issue several
changes will happen:

1. There will be class ThemeManager (or a similar name), this manager
will provide a set of PropertyKeys. Using these keys clients will have
the ability to override the settings of a theme without the need to
subclass or even access the theme.

2. The ThemeManager will make use of UIProperties to distribute
its content. This way clients can override settings for individual
Dockables.

� It is hard to start with the framework. And it is nearly impossible to use
some of the advanced stuff. In order to help people finding their way, the
next version will include a set of examples. There may be between 20 to
30 examples, each example will be an executable application showing and
explaining how to accomplish some task.

40

� The framework would support unsigned applets and webstart applications.
But clients need to use special “secure” classes. This is an obstacle: it
forces the use of factories at locations where factories do not improve
the framework. Also subclassing is broken because there are two classes
esentially doing the same, but not being the same. For these reasons the
“secure” package will be removed in the next version. Instead classes will
get the ability to switch between “secure” and “normal” behavior even
after they were created.

8.3 Version 1.1.0

8.3.1 Of the people using the framework

This time there is no question that is asked by many people. Almost all questions
are about little things. So the list below contains only some example questions.

� Question: When will the framework be bugfree?
Answer: Never. But the number of bugs is slowly decreasing. Your
questions and bug reports can help speeding up that process. Always
include the stacktrace (yes, really, you might not have guessed but they
so much help finding bugs...) and/or a description how to reproduce the
bug.

� Question: What about transparent background?
Answer: Does not have a high priority, as transparancy can already be
simulated.

� Question: How does the CGrid work, how do I add or remove Dockables
from a CControl.
Answer: There is still much confusion about the CGrid. CGrid can be
used one time to setup the initial layout, afterwards the method
setVisible of CDockable has to be used to make new Dockables vis-
ible. You need to add (addDockable) any Dockable to the CControl

unless you added it through the CGrid.

8.3.2 Of the developers

With version 1.1.0 the framework moves from “beta” to “release”. There were
many small enhancements, notably the complete elimination of the “secure”
packages and the introduction of perspectives.

� Customization is now much easier due to existence of the ThemeManager

and the various subclasses of UIProperties. What remains missing are
some examples how to use the new features, this will be addressed in
version 1.1.1.

� A lot small “todo”s have been collected in version 1.1.0, and version 1.1.1
is mostly dedicated on solving this open issues.

� While perspectives are already a powerfull tool they lack features like
exporting/importing from a file and an easy way to modify them.

41

1. Ideally clients should be able to define a default perspective, modify
the perspective (e.g. adding additional Dockables) and the frame-
work would extrapolate the current layout by comparing the original
default perspective with the modified one. If and how this feature
could be supported is yet open to debate.

2. An editor to inspect and modify the perspectives of an application
might also be a handy tool. At the moment this is more science
fiction than reality.

8.4 Version 1.1.1

8.4.1 Of the people using the framework

In the year of working on 1.1.1, there were a lot questions that could be answered
without the need of modifying the framework. Many people reported bugs, and
they were fixed whenever possible. As good as all feature requests could be
implemented. Below are the three most prominent open questions:

� Question: There seems to be some issues with focus.
Answer: Yes, the focus system still has issues. Some code has been re-
placed during development of 1.1.1, a few border cases have been resolved.
And the new FocusStrategy tracks the last focused child Component of
each Dockable. But all in all the focus system still does not work fully
satisfying, this construction site will remain open for a long time.

� Question: How well is fullscreen support?
Answer: It’s a lot better than in earlier versions, some issues may still
appear. For example a maximized ScreenDockWindow may cover the
taskbar. It is not yet clear how to fix these issues.

� Question: What is with the Eclipse 4.x theme?
Answer: The original plan was to include a theme looking like Eclipse
4.x in version 1.1.1, but instead the Toolbar Extension got included. The
theme is now scheduled to appear in 1.1.2.

8.4.2 Of the developers

The unexpected introduction of the Toolbar Extension created a lot of work.
As a result the core of DockingFrames did not get as much love as in previous
versions. But then looking at the feedback from other developers, most issues
nowadays fall in the area of “minor annoyances”. Sure, there are still bugs, but
they do no longer stop entire applications from working.

� New features, like the animations during drag and drop, have purely as-
thetic value. They do make the framework “better”, but they don’t add
anything that is critical. Future versions will have even more maintenance,
and less new features.

� Streamlining various interfaces was a good thing, it adds more flexibility
and less possibilities for errors in how to implement some modules like the
DockStations.

42

� The big new thing of course is the Toolbar Extension. Many modifications,
for example the configuration of ScreenDockWindows, are a direct result
of supporting the extension. The extension itself is not yet finished, new
bugs and missing features will certainly provide work for a long time.

43

A Properties

Core allows clients to set a number of properties, Common adds a few more. All
properties can be set or read by putProperty and getProperty of CControl.
An example:

1 CControl c on t r o l = . . .
2
3 PropertyKey<KeyStroke> key = con t r o l .KEY CLOSE;
4 KeyStroke value = KeyStroke . getKeyStroke (” s h i f t X”) ;
5
6 con t r o l . putProperty (key , va lue) ;

A.1 Client specific properties

The following properties are intended to be used by the client only, the keys are
stored as constants in CControl:

Maximize or normalize
KEY MAXIMIZE CHANGE : If pressed then the focused dockables changes
between maximized and normal state.

Maximize
KEY GOTO MAXIMIZED : If pressed then the focused dockable becomes max-
imized.

Normalize
KEY GOTO NORMALIZED : If pressed then the focused dockable becomes nor-
malized.

Minimize
KEY GOTO MINIMIZED : If pressed then the focused dockable becomes min-
imized.

Externalize
KEY GOTO EXTERNALIZED : If pressed then the focused dockable becomes
externalized.

Close
KEY CLOSE : If pressed then the focused dockable is made invisible.

A.2 Advanced properties

Some additional properties are reserved for more detailed customization.

The CControl itself
CControl.CCONTROL : This unmodifiable property allows access to the
CControl even if only a DockController is available.

Not resizeable Dockables
CControl.RESIZE LOCK CONFLICT RESOLVER : Tells how to distribute space
when two or more dockables have conflicting size requests. See also chap-
ter 7.3.

44

Double click
LocationModeManager.DOUBLE CLICK STRATEGY : This strategy tells to
what extended-mode a Dockable changes if the user double clicks on it.

Enabled modes
LocationModeManager.MODE ENABLEMENT : This strategy tells what extended-
modes are available for each Dockable.

45

