
DockingFrames 1.0.8 - Core

Benjamin Sigg

February 14, 2010

1

Contents

1 Introduction 4

2 Notation 4

3 Basics 4
3.1 Hello World . 5
3.2 Dockable . 5
3.3 DockStation . 6
3.4 DockController . 7
3.5 DockFrontend . 8

3.5.1 Close-Button . 9
3.5.2 Storing the layout . 9

4 Load and Save layouts 9
4.1 Local: DockableProperty . 9

4.1.1 Creation . 10
4.1.2 Usage . 10
4.1.3 Storage . 11

4.2 Global: DockSituation . 11
4.2.1 Basic Algorithms . 11
4.2.2 Basic Usage . 12
4.2.3 Extended Algorithms . 14
4.2.4 Extended Usage . 15

4.3 DockFrontend . 16
4.3.1 Local . 16
4.3.2 Global . 16
4.3.3 Missing Dockables . 16

5 Actions 17
5.1 Show Actions . 18

5.1.1 List of Actions . 19
5.1.2 Source of Actions . 19

5.2 Standard Actions . 20
5.2.1 Simple actions . 21
5.2.2 Group actions . 21

5.3 Custom actions . 23
5.3.1 Reuse existing view . 23
5.3.2 Custom view . 24

6 Titles 25
6.1 Lifecycle . 25
6.2 Custom titles . 26

6.2.1 Implementing a new title 26
6.2.2 Apply the title . 27

2

7 Themes 28
7.1 Existing Themes . 28

7.1.1 NoStackTheme . 28
7.1.2 BasicTheme . 28
7.1.3 SmoothTheme . 29
7.1.4 FlatTheme . 29
7.1.5 BubbleTheme . 29
7.1.6 EclipseTheme . 30

7.2 Customize DockThemes . 31
7.2.1 UI-Properties . 31
7.2.2 Colors . 32
7.2.3 Fonts . 33
7.2.4 Icons . 34
7.2.5 Actions . 34
7.2.6 Titles . 34

7.3 Custom Theme . 34

8 Drag and Drop 34
8.1 Relocator . 34
8.2 Sources . 35

8.2.1 DockElementRepresentative 35
8.2.2 Remote control . 35

8.3 Destinations . 36
8.3.1 Search . 36
8.3.2 Drop . 37

8.4 Influences . 38
8.4.1 Modes . 38
8.4.2 Restrictions . 38

9 Preferences 39
9.1 Model . 39

9.1.1 Preference . 39
9.1.2 PreferenceModel . 40
9.1.3 PreferenceTreeModel . 41

9.2 View . 41
9.2.1 Editors . 41
9.2.2 Operations . 41

9.3 Storage . 42
9.4 Lifecycle . 43

10 Properties 43
10.1 Themes . 44
10.2 Stations . 45
10.3 Controlling . 46
10.4 Legacy . 46
10.5 Gimmicks . 47

3

1 Introduction

DockingFrames is an open source Java Swing framework. This framework allows
to write applications with floating panels. A floating panel is a Component that
can be moved around by the user.

DockingFrames consists of two libraries, Core and Common. Core provides
the basic functionality of the framework. It introduces a lot of features, but
does not connect them. Core can be used without Common, but it gets a lot
easier if both libraries are used together.

This document covers only Core, Common has its own guide. Not all the
details of Core are described, but this document gives a nice oversight of the
more important aspects.

2 Notation

This document uses various notations.
Any element that can be source code (e.g. a class name) and project names

are written mono-spaced like this: java.lang.String. The package of classes
and interfaces is rarely given since almost no name is used twice. The pack-
ages can be easily found with the help of the generated API documentation
(JavaDoc).

Tips and tricks are listed in boxes.

Important notes and warnings are listed in boxes like this one.

Implementation details, especially lists of class names, are written
in boxes like this.

These boxes explain why some thing was designed the way it is.
This might either contain some bit of history or an explanation
why some awkward design is not as bad as it first looks.

3 Basics

The basic idea of Core is to have one object that controls the framework, one
object for each floating panel and one object for each area where a floating panel
can be docked.

4

The controller is a DockController, the floating panels are
Dockables and the dock-areas are DockStations.

3.1 Hello World

Let’s start with a simple hello world. This application uses the three basic
components, the example consists of valid code and can run:

1 import javax . swing . JFrame ;
2
3 import b i b l i o t h ek . gui . DockContro l ler ;
4 import b i b l i o t h ek . gui . dock . DefaultDockable ;
5 import b i b l i o t h ek . gui . dock . Sp l i tDockStat ion ;
6 import b i b l i o t h ek . gui . dock . s t a t i o n . s p l i t . Spl itDockGrid ;
7
8 public c lass HelloWorld {
9 public stat ic void main (St r ing [] a rgs) {

10 DockContro l ler c o n t r o l l e r = new DockContro l ler () ;
11
12 Sp l i tDockStat ion s t a t i o n = new Spl i tDockStat ion () ;
13 c o n t r o l l e r . add (s t a t i o n) ;
14
15 Spl itDockGrid g r id = new Spl itDockGrid () ;
16 g r id . addDockable (0 , 0 , 2 , 1 , new DefaultDockable (”N”)) ;
17 g r id . addDockable (0 , 1 , 1 , 1 , new DefaultDockable (”SW”)) ;
18 g r id . addDockable (1 , 1 , 1 , 1 , new DefaultDockable (”SE”)) ;
19 s t a t i o n . dropTree (g r id . toTree ()) ;
20
21 JFrame frame = new JFrame () ;
22 frame . add (s t a t i o n . getComponent ()) ;
23
24 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
25 frame . setBounds (20 , 20 , 400 , 400) ;
26 frame . s e tV i s i b l e (true) ;
27 }
28 }

What happens here? In line 10 a DockController is created. The controller
will handle things like drag and drop. All elements will be in his realm. In line
12 a new DockStation is created and in line 13 this station is registered as root
station at the DockController.

Then in line 15-19 a few children for station are generated. To set the
layout of those children a SplitDockGrid is used. SplitDockGrid takes a few
Dockables and their position and puts this information into a form that can be
understood by SplitDockStation (line 19). It would be possible to add the
Dockables directly to the station, but this is the easy way.

In line 21 a new frame is created and in line 22 our DockStation is added
to the frame.

More demonstration applications can be found in the big archive-
file of DockingFrames. Each demonstration concentrates its at-
tention on one feature of the framework.

3.2 Dockable

A Dockable represents a floating panel, it consists at least of some JComponent
(the panel it represents), some Icon and some text for a title. Each Dockable

5

can be dragged by the user and dropped over a DockStation.
Clients can implement the interface Dockable, but it is much less painful

just to use DefaultDockable. A DefaultDockable behaves in many ways like
the well known JFrame: title, icon and panel can be set and replaced at any
time.

A small example:
1 DefaultDockable dockable = new DefaultDockable () ;
2 dockable . s e tT i t l eText (” I ’m a JTree”) ;
3 Container content = dockable . getContentPane () ;
4 content . setLayout (new GridLayout (1 , 1)) ;
5 content . add (new JScro l lPane (new JTree ())) ;

If implementing Dockable, pay special attention to the API-doc.
Some methods have a rather special behavior. It might be a good
idea to subclass AbstractDockable or to copy as much as possible
from it.

A careful analysis of Dockable reveals that there is no way for ap-
plications to store their own properties within a Dockable (unless
using a subclass...). There are two reasons for this.
First: if only using the default implementation, then clients do
not have to worry about these properties. Storage of properties
must and will be handled by the framework itself.
Second: Components of the framework cannot get any unfair ad-
vantage over custom components. Everything has to be designed
in a way that it can work with new and unexpected implementa-
tions of Dockable.

3.3 DockStation

Dockables can never fly around for themselves, they need a DockStation as
anchor point. The relationship between DockStation and Dockable can best be
described as parent-child-relationship. A DockStation can have many children,
but a Dockable only one parent.

There are some classes which are DockStation and Dockable at the same
time. They allow to build a tree of DockStations and Dockables. A controller
can handle more than just one tree and Dockables can switch from one tree to
another.

There are different kind of DockStations, each kind has its unique behavior
and abilities:

StackDockStation The children are organized like on a JTabbedPane. Only
one child is visible, but another can be made visible by clicking some
button.

SplitDockStation The children are organized like in a tree of JSplitPanes.
All children are visible and the user can change the (relative) size of the
Dockables.

6

FlapDockStation Much like StackDockStation but the one visible child pops
up in its own window. This station can also show no Dockable at all.

ScreenDockStation Shows each child in its own window.

Clients can implement new DockStations. But be warned that the interface
contains many methods and a lot of them require a lot of code. Don’t expect
to write less than 1000 lines of code.

A small example that builds a StackDockStation:
1 StackDockStation stack = new StackDockStation () ;
2 s tack . s e tT i t l eText (”Stack”) ;
3 s tack . drop (new DefaultDockable (”One”)) ;
4 s tack . drop (new DefaultDockable (”Two”)) ;

Some observations: StackDockStation is a Dockable as well, in line 2 the title
is set. Two DefaultDockables are put onto the station in lines 3,4, the method
drop is available in all DockStations.

DockStations are the most complex classes within the framework,
they are also among the most important classes. It is very uncom-
mon to subclass them or to write new ones. If you think you need
to subclass a DockStation, be sure to have explored all other
options.

3.4 DockController

A DockController holds Dockables, DockStations and other supporting ele-
ments together. Most tasks are not handled by the DockController but by one
of its sub-controllers, e.g. drag and drop is handled by the DockRelocator.

There can be more than one DockController in an application. Each con-
troller has its own realm and there is no interaction between controllers. But
most applications will need only one DockController.

Clients need to register the roots of their DockStation-Dockable-trees.
They can use the method add of DockController to do that. All children
of the root will automatically be registered as well. If a DockStation is not
registered anywhere, it just does not work properly. For Dockables one could
say that registration equals visibility. A registered Dockable can be seen by the
user, an unregistered not.

DockController uses other classes to handle tasks. Many of these
classes can be observed by listeners. An incomplete list:
DockRegister: a list of all Dockables and DockStations.
DockRelocator: handles drag and drop operations, can create a
Remote to play around without user interaction.
DoubleClickController: detects double clicks on Dockables or
on components which represent Dockables.
KeyBoardController: detects KeyEvents on Dockables or on
components which represent Dockables.

7

Never forget to register the root-DockStation(s) at the
DockController using the method add.

Why not just one DockController implemented as singleton? A
singleton would make many interfaces simpler, eliminating all the
code where the controller is handed over to even the smallest
object. But there is absolutely no reason why only one controller
should exist. A controller has no unique property that would
justify a singleton. And not using a singleton gives more flexibility.

3.5 DockFrontend

DockController only implements the basic functionallity. While this allows
developers to add new exciting shiny customized features, it certainly doesn’t
help those developers which just want to use the framework.

The class DockFrontend represents a layer before DockController and adds
a set of helpful methods. Especially a “close”-button and the ability to store
and load the layout are a great help. DockFrontend replaces DockController,
clients should add the root-DockStations directly to the frontend, not to the
controller. They can use the method addRoot to do so.

DockFrontend adds a few nice features but not enough to
write an application without even bothering to have a look at
DockingFrames. Developers which can live with not having abso-
lute control over the framework should use Common. Common adds
all those features which make a docking-framework complete, e.g.
a “minimize”-button

DockFrontend was written long after DockController. For the
most part it just reuses code that already exists. It would be
possible to write two applications with exact the same behavior
once with and once without DockFrontend. The only thing that
DockFrontend adds to the framework is a central hub where all
the important features are accessible and a good set of default-
values for various properties of the framework.

Use the methods called setDefault... to set default values for
properties which will be used for all Dockables, e.g. whether
Dockables are hideable or not.

8

3.5.1 Close-Button

In order to show the close-button clients need first to register their Dockables.
The method addDockable is used for that. Each Dockable needs a unique
identifier that is used internally by DockFrontend. Later clients can call the
method setHideable to show or to hide the close-button.

By calling the method setShowHideAction clients can make the buttons
invisible for all Dockables, note however that the Dockables hideable-property
is not affected by this method.

If clients want to control whether a Dockable can be closed, they should add
a VetoableDockFrontendListener to the DockFrontend. This listener will be
informed before a Dockable is made invisible and allows to cancel the operation.

Why is the close-button not part of the very core of the frame-
work? For one because the very core works on abstract levels and
should not be made more complex with special cases like this but-
ton. There are also different implementations of this button and
not all perform the same actions when pressed (this is especially
true when using Common).

3.5.2 Storing the layout

The methods save, load, delete and getSettings are an easy way to store
and load the layout. This mechanism will be explained in detail in another
chapter.

4 Load and Save layouts

The layout of an application means the position, size and relationships of all the
Dockables and DockStations. To store this layout on a hard-drive and later to
load it again is a great help for the user, he does not need to setup the layout
over and over again.

DockingFrames distinguishes between local and global layout information.
Local information only describes the relationship between one Dockable and
its parent, global information describes whole trees of elements. There are no
algorithms which recreate a global layout only from local information, but there
are also no algorithms which can place a Dockable in an existing tree using
global information. So both kinds of data have their use.

4.1 Local: DockableProperty

Every DockStation can create a DockableProperty-object for one of its chil-
dren. This DockableProperty contains the position and size of one child.

Some DockStations are also Dockables. Those stations are not only able
to create DockableProperties for their children but their parents can create a
property for them. These two properties can be strung together to form a chain
describing the position of a grand-child on its grand-parent.

9

4.1.1 Creation

How to create a DockableProperty? One way is of course just to create new
objects using new XYProperty(...). The other way is to retrieve them from
some DockStations and Dockables:

1 Dockable dockable = . . .
2
3 DockStation root = DockUt i l i t i e s . getRoot (dockable) ;
4 DockableProperty l o c a t i o n = DockUt i l i t i e s . getPropertyChain (root ,

dockable) ;

In line 1 we get some unknown Dockable. In line 3 the DockStation which is
at the top of the tree of stations and Dockables is searched. Then in line 4 the
location of dockable in respect to root is determined.

There are five DockableProperties present in the framework.

StackDockProperty for StackDockStation, contains just the
index of the Dockable in the stack.

FlapDockProperty for FlapDockStation, contains index, size
and whether the Dockable should hold its position when not
focused.

ScreenDockProperty for ScreenDockStation, contains the
boundaries of a Dockable on the screen.

SplitDockProperty for SplitDockStation. This deprecated
property contains the boundaries of a Dockable on the sta-
tion.

SplitDockPathProperty also for SplitDockStation. This
new property contains the exact path leading to a Dockable
in the tree that is used internally by the SplitDockStation.

4.1.2 Usage

How to apply a DockableProperty? Every DockStation has a method drop
that takes a Dockable and its position. That might look like this:

1 Dockable dockable = . . .
2 DockStation root = . . .
3 DockableProperty l o c a t i o n = . . .
4
5 i f (! root . drop (dockable , l o c a t i o n)){
6 root . drop (dockable) ;
7 }

In lines 1-3 some elements that were stored earlier are described. In line 5 we
try to drop dockable on root, if that fails we just drop it somewhere (line 6).

DockablePropertys are not safe to use. If the tree of stations and Dockables
changes, then an earlier created DockableProperty might not be consistent
anymore. The method drop of DockStation checks for consistency and returns
false if a DockableProperty is no longer valid.

10

Always check the result of drop, if it is false then the operation
was canceled by the station because the property is invalid.

4.1.3 Storage

DockablePropertys can be stored either as byte-stream or in xml-format by a
PropertyTransformer. A set of DockablePropertyFactories is used by the
transformer to store and load properties. The factories for the default properties
are always installed. If a developer adds new properties then he should use the
method addFactory to install new factories for them.

If using DockFrontend the method registerFactory can be used
to add a new DockablePropertyFactory. This factory will then
be used by global transformer of the frontent.

4.2 Global: DockSituation

The layout of a whole set of Dockables and DockStations can be stored with
the help of a DockSituation. A DockSituation is a set of algorithms that
transform the layout information from one format into another, e.g. from the
dock-tree (built by stations and Dockables) to an xml-file. A DockSituation
uses various factories for these transformations.

4.2.1 Basic Algorithms

Global layout information comes in four formats:

dock-tree format The set of Dockables and DockStations as they are seen
by the user.

binary format A file containing binary data. This file is normally written by
a DataOuputStream and read by a DataInputStream.

xml format A file containing xml. To write and read such a file the class XIO
is used.

layout-composition format An intermediate format that consists of a set of
DockLayoutCompositions. These objects are organized in a tree that has
the same form as the dock-tree.

If converting from a to b then a DockSituation will always first convert a to
layout-composition and then layout-composition to b.

DockSituation always creates new files or new objects. In its
basic form it is not able to reuse existing elements.

A DockSituation uses different factories and strategies for these conversions:

11

DockFactory These factories are responsible to load or store the layout of
a single Dockable or DockStation. Like DockSituation they need to
support four formats. For one the dock-element they store or read, then
binary- and xml-format and finally some object as intermediate formate.
They are free to choose any kind of object as intermediate format.

AdjacentDockFactory They function the same way as DockFactories but
can be used for arbitrary dock-elements. AdjacentDockFactories are
used to store additional information about elements, that can, but does
not have to be, layout information.

MissingDockFactory These are used when another factory is missing. The
MissingDockFactory can try to read the xml-format or binary-format
and convert it to the intermediate format.

DockSituationIgnore This strategy allows a DockSituation to ignore dock-
elements when storing the layout. That can be helpful if for example an
application has Dockables which show only temporary information that
will be lost on shutdown anyway.

A DockSituation can handle missing factories when reading xml or binary
format. It first tries to use a MissingDockFatory to read the data, if that fails
it either throws away the data (for AdjacentDockFactories) or stores the data
in the layout-composition as “bubble” in its raw format. These “bubbles” can
be converted later when the missing factories are found.

A DockLayoutComposition contains a lot of information. First of
all a list of children to build the tree. Then a list of DockLayouts
which represent the information from AdjacentDockFactories.
Each DockLayout contains a unique identifier for the fac-
tory and the data generated by the factory. Finally a
DockLayoutComposition contains a DockLayoutInfo which rep-
resents the data of or for a DockFactory. A DockLayoutInfo
either contains a DockLayout (the normal case) or some data in
xml or binary format. The later case happens if a factory was
missing while reading a file, the information gets stored until it
can be read later.

The method fillMissing can be used to read “bubbles” in raw
format. The method estimateLocations can be used to build
DockablePropertys for the elements. These are the positions
were the elements would come to rest if the layout information
were converted into a dock-tree.

4.2.2 Basic Usage

How is a DockSituation utilized in order to load or store the layout of an
application?

Each Dockable and each DockStation has a method getFactoryID. This
method returns an identifier that has to match the unique identifier that is

12

returned by the method getID of DockFactory. So the first step in using a
DockSituation will always be to make sure that for any identifier a matching
DockFactory is available. Clients have to call the method add of DockSituation
to do so.

Default factories are installed for DefaultDockable,
SplitDockStation, StackDockStation and FlapDockStation.

The ScreenDockStationFactory for ScreenDockStation is not
installed per default. This factory requires a WindowProvider
to create the station, and since this provider cannot be guessed
by DockSituation the factory is missing. Clients have to add
ScreenDockStationFactory manually.

Afterwards clients just have to call write or writeXML to write a set of
DockStations and their children. Clients can later call read or readXML to
read the same map of elements. Note that every call to read or readXML will
create a new set of Dockable- and DockStation-objects.

Let’t give an example how to write an xml file:
1 try{
2 JFrame frame = . . .
3 DockStation root = . . .
4
5 DockSituat ion s i t u a t i o n = new DockSituat ion () ;
6 s i t u a t i o n . add (new ScreenDockStat ionFactory (frame)) ;
7 s i t u a t i o n . add (new MySpecialFactory ()) ;
8
9 Map<Str ing , DockStation> map = new HashMap<Str ing , DockStation >() ;

10 map . put (” root ” , root) ;
11
12 XElement xlayout = new XElement (” layout ”) ;
13 s i t u a t i o n . writeXML(map, x layout) ;
14
15 FileOutputStream out = new FileOutputStream (” layout . xml”) ;
16 XIO . writeUTF (xlayout , out) ;
17 out . c l o s e () ;
18 }
19 catch (IOException ex){
20 ex . pr intStackTrace () ;
21 }

On line 2 the main-frame of the application is given and on line 3 the applications
root DockStation. The first step is to create a new DockSituation on line 5
and add the missing ScreenDockStationFactory on line 6. Then other factories
that are not part of DockingFrames but the application itself can be added like
on line 7. On lines 9, 10 a map with all the root-stations of the application
is built up. Then on line 12 we prepare for writing in xml-format by creating
a XElement. The situation converts the dock-tree to xml-format in line 13.
Finally on lines 15-17 the xml-tree is written into a file “layout.xml”.

The next example shows how reading from binary format can look like:
1 try{
2 JFrame frame = . . .
3
4 DockSituat ion s i t u a t i o n = new DockSituat ion () ;

13

5 s i t u a t i o n . add (new ScreenDockStat ionFactory (frame)) ;
6 s i t u a t i o n . add (new MySpecialFactory ()) ;
7
8 Fi leInputStream f i l e S t r e am = new Fi leInputStream (” layout ”) ;
9 DataInputStream in = new DataInputStream (f i l e S t r e am) ;

10
11 Map<Str ing , DockStation> map = s i t u a t i o n . read (in) ;
12
13 in . c l o s e () ;
14
15 Sp l i tDockStat ion s t a t i o n = (Sp l i tDockStat ion)map . get (” root ”) ;
16 frame . add (s t a t i o n . getComponent ()) ;
17 }
18 catch (IOException ex){
19 ex . pr intStackTrace () ;
20 }

What happens here? In line 2 the main frame of the application is defined. In
lines 4-6 a DockSituation is set up. In lines 8, 9 a file is opened. In line 11
that file gets read by the DockSituation and a map that was earlier given to
write is returned. In line 15 the fact that map was earlier given to write is
used to guess that there is a SplitDockStation with key “root” in the map.
Finally in line 16 that station is put onto the main-frame which now shows the
new elements.

4.2.3 Extended Algorithms

The major drawback of the basic algorithms is that they always create new
Dockables and DockStations. It is nearly impossible to just change the lay-
out while an application is running, a layout can only be loaded on startup.
PredefinedDockSituation builds upon DockSituation and extends the algo-
rithms in a way that they can reuse existing dock-elements.

The extended version uses a special DockFactory, called PreloadFactory,
that is wrapped around the factories providied by the client. Writing does
not change much, the PreloadFactory delegates the work just to the original
DockFactory. Reading is more interesting. The PreloadFactory forwards
an already existing dock-element to the the original DockFactory which then
updates the layout of the element.

A side effect of this implementation is that for the basic algorithms no factory
seems ever to be missing. In fact the issue of missing factories is just moved to
the PreloadFactory. The PreloadFactory can however store data in its raw
format if necessary.

A PreloadFactory uses a PreloadedLayout as intermediate
format. This PreloadedLayout contains the unique identi-
fier of the original DockFactory and a DockLayoutInfo. The
DockLayoutInfo contains either data in raw format or in the in-
termediate format of the original factory.

What happens if a PredefinedDockSituation finds layout information for
an element, has all the necessary factories but not the element itself? The
default behavior is to ignore the information. However it is possible to use
backup-DockFactories. These backup factories will create new elements if the
originals are missing. They are also used when reading raw format and the orig-

14

inal factory is missing. These backup factories are added through addBackup,
they have to use a BackupFactoryData as intermediate format.

Note that the MissingDockFactory of DockSituation is not used
for elements that were predefined on writing, because for those
elements the PreloadFactory - which is never missing - was used.

The existence of these two sets of algorithms, basic and extended,
lays in the history of DockingFrames. First the basic algorithms
were written. They did their job well for small applications. But
when applications began to grow it became evident that their were
not sufficient. Instead of rewriting them another layer was added.
The division in two sets of algorithms has also the advantage of
reduced complexity.
The recovery mechanisms for missing factories were introduced
for version 1.0.7. They are not yet satisfying and it is likely that
they will be changed again in future versions.

4.2.4 Extended Usage

PredefinedDockSituation is used in the same way as DockSituation. The
only difference is the possibility to predefine elements. The method put can be
used for that. This method expects a unique identifier for any new element.

An example can look like this:
1 DockStation roo tS ta t i on = . . .
2 Dockable f i l eTreeDockab l e = . . .
3 Dockable contentDockable = . . .
4
5 Prede f inedDockSi tuat ion s i t u a t i o n = new Prede f inedDockSi tuat ion () ;
6
7 // setup s i t ua t i on { . . . }
8
9 s i t u a t i o n . put (” root ” , r oo tS ta t i on) ;

10 s i t u a t i o n . put (” f i l e −t r e e ” , f i l eTreeDockab l e) ;
11 s i t u a t i o n . put (” content ” , contentDockable) ;
12
13 // read or wri te { . . . }

In lines 1-3 some DockStations and Dockables are defined. These are the
elements that are always present and need not to be recreated when loading a
layout. In line 5 a new PredefinedDockSituation is created. Then the basic
setup (adding factories, ...) is done in line 7. In the lines 9-11 the predefenied
elements are added to the situation. For each of them a unique identifier is
choosen. Finally in line 13 we can either write or read the layout.

Any String can be used as unique identifier. Small identifiers
with no special characters are however much less likely to attract
any kind of trouble.

15

4.3 DockFrontend

DockFrontend offers storage for local and for global layout information. Clients
need to register their Dockables through addDockable if they want access to
the full range of storage-features.

Layout information can be stored in xml- or binary-format. The methods
write, writeXML, read and readXML will take care of this.

4.3.1 Local

Whenever hide is called for a registered Dockable its local position gets stored.
If later show is called this position is reapplied and the element shows up at the
same (or nearly the same) location it was earlier.

4.3.2 Global

DockFrontend internally uses a PredefinedDockSituation to store the global
layout. All root-DockStations and all registered Dockables are automatically
added to this situation. The global layout can either be stored on disk or it
can be stored in memory. It is possible to store more than just one layout in
memory and allow the user to choose from different layouts. There are methods
to interact with the layouts in memory:

save Saves the current layout in memory. Clients can provide a name for the
layout or use the name of the last loaded layout.

load Loads a layout. The name of the layout is used as key.

delete Deletes a layout from memory.

getSettings Gets a set of names for the different layouts.

getCurrentSetting Gets the name of the layout that is currently loaded, can
be null.

setCurrentSetting If there is a layout with the name given to this method
than that layout is loaded. Otherwise the current layout gets saved with
the new name.

4.3.3 Missing Dockables

The default behavior of DockFrontend is to throw away information for missing
Dockables. It is however possible to change that behavior.

If data needs to be stored for a missing Dockable then DockFrontend uses
an “empty entry”. Clients can define new empty entries by invoking the method
addEmpty. Existing entries can be removed with removeEmpty, with listEmpty
all empty entries can be accessed. Once an entry has been marked as “empty” it
can switch between filled and empty as many times as necessary without loosing
its layout information. The DockFrontend can even store data in raw xml or
binary format and convert this data later once an appropriate DockFactory
becomes known.

16

“Empty entries” are best to be used if a client already knows the
identifiers of all the Dockables that can eventually be registered
at the DockFrontend.

Another way is to register backup-DockFactories by calling the method
registerBackupFactory. These factories will create new Dockables which are
then automatically registered.

A backup-factory is the strongest weapon against missing infor-
mation. If there is a possibility to use them, use them.

And finally there is the MissingDockableStrategy which can be set using
setMissingDockableStrategy. This strategy enables or disables to automatic
processes.

� It allows to create “empty entries” automatically. There are two meth-
ods shouldStoreShown and shouldStoreHidden which have to check the
identifiers and to return true to allow a new empty entry.

� It allows to use new DockFactories as soon as they become known. Nor-
mally DockFrontend does not change the layout without the explizit com-
mand from a client (by invoking setSetting directly or indirectly). If
shouldCreate returns true however DockFrontend will update the lay-
out as soon as enough information is available to do so.

MissingDockableStrategy should be used when no information
about what is missing is available. It allows to run a “do whatever
is possible”-strategy.

If a strategy allows to store anything and a client often uses differ-
ent identifiers for their Dockables, then layouts will start to grow
and never stop. Don’t forget to delete outdated information.

The interface MissingDockableStragey offers two default imple-
mentations: DISCARD ALL and STORE ALL. The first implementa-
tion is set as default and allows nothing, the second one allows
everything.

5 Actions

All Dockables can be associated with some actions. An action normally appears
as some kind of button in the title of a Dockable, they can however appear at

17

other places as well. There are different types of actions, some may behave like
a JButton others like a JCheckBox, clients can add new types.

Figure 1: A Dockable with a few DockActions in its title and on a popup menu.
The action marked by an arrow is the same object just shown in different views.

Actions are represented by the interface DockAction. Each Dockable has a
list of them represented by a DockActionSource.

If some component wants to show some actions it firsts asks a Dockable
for its global DockActionSource. It then asks each DockAction of that list
to create a view that fits to the component. A title will ask for another kind
of view than a menu. At any time actions can be added or removed from
the DockActionSource and any component showing actions will react on these
events.

The interface DockAction is quite simple. Two methods to install
(bind) and to uninstall (unbind) the action. One method to create
new views (createView) and one method to trigger an action
programatically (trigger). More useful are the many subclasses
and subinterfaces. StandardDockAction introduces icons, text
and tooltip. Five subinterfaces for StandardDockAction exist and
for all of them a default-view is provided.

There are three levels in the design of DockAction and its sub-
classes. First there is DockAction which allows almost any kind of
Component to be used as view. Second there are subinterfaces for
the standard tasks, the framework provides views for them. Third
are real implementations of the second-level interfaces. Some in-
terfaces are implemented in more than one action for different
styles of aplication organization.

5.1 Show Actions

Assuming one has a DockAction (more about different kind of actions is in the
next chapter) how can the framework be advised to show it?

18

5.1.1 List of Actions

DockActions never travel alone in this framework. They always travel with
other actions in a DockActionSource. Actions can be added or removed from
DockActionSources at any time and modules showing actions will react on this.

Most methods of DockActionSource can be understood without explana-
tion. The method getLocationHint is an exception. It returns a LocationHint
which is used to order several DockActionSources into a list (and treat them
as one big DockActionSource). Clients which implement an ActionOffer can
also introduce new kind of LocationHints.

LocationHints consists of an Origin and a Hint. The hint tells
the preferred location in respect to other elements, the origin are
used if multiple hints collide. New Hints and Origins can be
written.

5.1.2 Source of Actions

Actions have different sources, each kind of source has a specific purpose.

� The local action source is part of every Dockable. This source is ac-
cessed through getLocalActionOffers. If AbstractDockable or a sub-
class like DefaultDockable is used then setLocalActionOffers allows
to quickly set and exchange the actions. This source of actions should be
used for actions that are closely linked with some Dockable.

� ActionGuards can add actions to every Dockable. An ActionGuard is
added to a DockController through addActionGuard. Its method react
will be called whenever the actions of a Dockable are searched. If react
returns true then the method getSource is called. This source of actions
is intended for general purpose actions and for actions which need a special
position in the list of actions (e.g. a close-action needs to be at the very
end).

� Every DockStation can add direct and indirect action offers to its chil-
dren. For this DockStation has two methods getDirectActionOffers
and getIndirectActionOffers. Direct action offers are used only
for true children, indirect action offers can be applied to grand-
children as well. These sources of actions are intended for actions that
are linked to a DockStation, like the maixmimze-action that can be seen
on a SplitDockStation.

Two mechanisms are responsible for collecting all the actions from these dif-
ferent sources and to put them into a list. Clients can adjust these mechanisms
even to a point where they no longer collect actions but introduce their own
actions.

� Every DockController has at least one ActionOffer. An ActionOffer
has two methods: interested tells whether the offer is interested in man-
aging a certain Dockable and getSource collects the actions of an inter-
esting Dockable. The primary function of an ActionOffer is to order the

19

various sources. It is up to the offer to decide how to actually do the sort-
ing. The default ActionOffer uses the LocationHint which is attached
to every DockActionSource.

Clients can use addActionOffer and setDefaultActionOffer to change
the offers of a DockController. The public method listOffers then
advises the controller to use one of its offers.

� Modules which need a list of actions call getGlobalActionOffers from
Dockable. This method is the ultimate piece of code which decides what
to show. This method can ignore anything else that has been said in this
chapter and introduce its very own mechanism to collect actions.

Most Dockables will utilize HierarchyDockActionSource instead of im-
plementing getGlobalActionOffers. This special source observes the hier-
archy of a Dockable and changes its content automatically. Dockables using
HierarchyDockActionSource should bind the source. They need to call update
if their own local action source is exchanged.

It is generally a bad idea to write DockActionOffers or
getGlobalActionOffer methods which do not just collect ac-
tions. There are already mechanisms to introduce DockActions
and they should suffice for every possible situation.

5.2 Standard Actions

There are a number of standard actions in the framework. Clients can either
subclass them or instantiate and add listeners to them. A user would put the
actions into six groups:

Button If the user clicks this action then always the same thing happens. The
interface ButtonDockAction collects all the buttonlike actions.

Checkbox When triggered it changes some property from true to false or
from false to true. All actions with this behavior implement the interface
SelectableDockAction.

Radiobutton Like a group of checkboxes, but only one radiobutton can be se-
lected within that group. Like checkboxes all these actions are represented
by SelectableDockAction. Several radiobuttons can be linked together
with the help of a SelectableDockActionGroup.

Menu A menu just contains a list of other DockActions. These other actions
are normally hidden and only shown if the user wants to see them. Menus
are implementing the interface MenuDockAction.

Drop-down-button Like a menu but the last triggered action can be trig-
gered again without opening the menu. The interface DropDownAction
represents these special menus.

Separator A separator just is a line, a graphical element to divide a set
of actions into subsets. Separators are implemented through the class
SeparatorAction.

20

5.2.1 Simple actions

Simple actions are a set of classes that implement the various action-interfaces.
These simple actions do not have any advanced features and should be quite
simple to use. An example might be the following code:

1 public c lass ExampleAction extends SimpleButtonAction{
2 public ExampleAction () {
3 setText (”Run . . . ”) ;
4 s e t I c on (new ImageIcon (”example . png”)) ;
5 s e tToo l t i p (”Run the example”) ;
6 }
7
8 @Override
9 public void ac t i on (Dockable dockable) {

10 System . out . p r i n t l n (”kabum”) ;
11 }
12 }

Here the class SimpleButtonAction is used. The action is subclassed by
ExampleAction. In lines 3-5 properties like the icon are set. The subclass
overrides the method action (lines 9-11) which is invoked every time when the
user presses the button.

The available simple actions are:

� SimpleButtonAction: For creating buttons. Can either be subclassed
(like in the example above) or just instanciated. Clients can add instances
of the well known ActionListeners which will be invoked when the user
presses the button. Exaclty like a JButton.

� SimpleSelectableAction.Check and SimpleSelectableAction.Radio:
For creating checkboxes and radiobuttons. Clients can add instances of
SelectableDockActionListener to be informed whenever the state of
the action changes. A SelectableDockActionGroup can be used to make
sure that only one action out of a set of actions is selected at any time.

� SimpleMenuAction: For creating menus. The method setMenu takes a
DockActionSource and the content of this source will be shown.

� SimpleDropDownAction: For creating drop down menus. Has methods to
get and set the selection, and methods to add or remove actions from the
menu.

5.2.2 Group actions

Group actions are DockActions that can be used for many Dockables at once
even with different properties for each Dockable. To be more precise, a
GroupKeyGenerator will assign a key to each Dockable. If any view asks the
action for a property (like the icon) this key will be used to search the property
in a map. All the group actions extend the class GroupedDockAction.

Let’s have a look at an example. The following action behaves like a check-
box. Its unique feature is the text that changes if the selected-state changes.

1 import b i b l i o t h ek . gui . Dockable ;
2 import b i b l i o t h ek . gui . dock . ac t i on . a c t i on s . GroupKeyGenerator ;
3 import b i b l i o t h ek . gui . dock . ac t i on . a c t i on s . GroupedSelectableDockAction ;
4
5 public c lass ExampleGroupAction extends
6 GroupedSelectableDockAction . Check<Boolean> {
7 public ExampleGroupAction () {

21

8 super (new GroupKeyGenerator<Boolean >(){
9 public Boolean generateKey (Dockable dockable){

10 return dockable .<getSomeProperty () >;
11 }
12 }) ;
13 setRemoveEmptyGroups (fa l se) ;
14
15 s e t S e l e c t e d (Boolean .FALSE, fa l se) ;
16 s e t S e l e c t e d (Boolean .TRUE, true) ;
17
18 setText (Boolean .FALSE, ”Unse lected ”) ;
19 setText (Boolean .TRUE, ” Se l e c t ed ”) ;
20 }
21
22 @Override
23 public boolean t r i g g e r (Dockable dockable) {
24 s e t S e l e c t e d (dockable , ! i s S e l e c t e d (dockable)) ;
25 return true ;
26 }
27
28 @Override
29 public void s e t S e l e c t e d (Dockable dockable , boolean s e l e c t e d){
30 dockable .< setSomeProperty (s e l e c t e d) >;
31 setGroup (s e l e c t ed , dockable) ;
32 }
33 }

The constructor (lines 7-20) sets up the action. First the GroupKeyGenerator
is set in lines 9-12. The key is a Boolean which represents “some property” of
a Dockable. The meaning of the property is not important. Through the keys
Dockables get grouped. When Dockables get added and removed a group may
become empty. Line 13 ensures that the action does not delete the properties
of empty groups.

A Boolean only has two states, both states will be used as key. So there
is a “true” and a “false” group. The selected-state of the action should match
the key of the group. In other words: if “some property” is true then the
action is selected, if “some property” is false then it is not. Lines 15, 16 are
responsible for this setting. The same behavior is enforced for the text of the
action in lines 18, 19.

The standard behavior of a SelectableDockAction is to change its selected
state as soon as the user triggers the action. If the action is used for many
Dockables than this behavior would look rather odd. All the actions would
change their state and most of them would do so wrongly. By overriding the
method trigger this problem can be prevented (lines 23-26). Instead of chang-
ing the selected state of the action, the group of the Dockable is changed by
invoking setSelected in line 24. Since the two groups have different selection
states the user will think that the action changed the state.

By the way: the method setSelected in lines 29-32 needs to be overriden
since the default behavior is to change the state of the action, not to change the
group of a Dockable.

Be careful when using group actions: they are complex to handle.
In many cases a simple action can replace a group action.

22

Group actions were introduced for DockStations. DockStations
need to apply the same actions to many Dockables. Instead of
setting up new actions all the time it was easier to have one action
that holds many properties at the same time.

There are only three group actions implemented:

� GroupedButtonDockAction

� GroupedSelectableDockAction.Check

� GroupedSelectableDockAction.Radio

5.3 Custom actions

Clients are free to implement new actions.

5.3.1 Reuse existing view

Whenever possible an existing view should be reused. There are 6 kind of
views defined in the framework. Each kind of view is represented through an
instance of ActionType, each of them is stored as constant in ActionType
itself. ActionType has one generic parameter. The view can force an ac-
tion to implement some interface through that parameter. For example, the
kind ActionType.BUTTON forces an action to implement ButtonDockAction.
Actions can use an ActionType as key for a factory that is stored in the
ActionViewConverter.

An example for an action that uses an ActionType to create its view:
1 public c lass ExampleButtonAction implements ButtonDockAction{
2
3 public <V> V createView (ViewTarget<V> target ,
4 ActionViewConverter converter , Dockable dockable){
5
6 return conver t e r . createView (ActionType .BUTTON, this ,
7 target , dockable) ;
8 }
9

10 public void ac t i on (Dockable dockable){
11 [. . .]
12 }
13
14 public Icon get Icon (Dockable dockable){
15 return [. . .] ;
16 }
17
18 [. . .]
19 }

Really important are the lines 3-8: these lines are all that is necessary to
create different button-views for different environments (menu, title). The
ActionViewConverter does all the work, it just has to be called with the correct
parameters.

23

The interface ButtonDockAction declares other methods like getIcon (lines
14-16) which will not be a challenge to implement.

5.3.2 Custom view

Writing a custom action with custom view is possible, but will require a lot
of work. Some good news: it is only necessary to implement the interface
DockAction and the raw interface DockAction has only very few methods. The
greatest challenge will be to write the method createView. This method can
be called any time and receives a ViewTarget, a ActionViewConverter and
the Dockable for which the view will be used. It has to return either null or
the type of object that is specified as the generic parameter of ViewTarget.
The framework will always use the same three instances of ViewTarget, all of
them are stored as constants in ViewTarget itself. So in theory a createView
could check which of the three ViewTargets it received and create one of three
different views. In practice it is much better to use the ActionViewConverter
for this task.

You might remember that the ActionViewConverter can instanciate new
views if an ActionType is given to its createView method. So the first step
should be to introduce a new ActionType. Only the second step is to write the
new action-class. This could result in something like this:

1 import b i b l i o t h ek . gui . Dockable ;
2 import b i b l i o t h ek . gui . dock . ac t i on . ActionType ;
3 import b i b l i o t h ek . gui . dock . ac t i on . DockAction ;
4 import b i b l i o t h ek . gui . dock . ac t i on . view . ActionViewConverter ;
5 import b i b l i o t h ek . gui . dock . ac t i on . view . ViewTarget ;
6
7 public c lass CustomAction implements DockAction{
8 public stat ic f ina l ActionType<CustomAction> CUSTOM =
9 new ActionType<CustomAction>(”custom”) ;

10
11 public <V> V createView (ViewTarget<V> target ,
12 ActionViewConverter converter , Dockable dockable){
13 return conver t e r . createView (CUSTOM, this ,
14 target , dockable) ;
15 }
16
17 @Override
18 public void bind (Dockable dockable){
19 // ignore
20 }
21
22 @Override
23 public void unbind (Dockable dockable){
24 // ignore
25 }
26
27 public boolean t r i g g e r (Dockable dockable){
28 return fa l se ;
29 }
30 }

Now the ActionViewConverter needs to be instructed of what to do with the
ActionType CUSTOM. This should be done on startup, before the first
CustomAction is even created. The ActionViewConverter is accessible through
the DockController. A client can call putDefault to set the default view fac-
tory for some type and target:

1 DockContro l ler c o n t r o l l e r = . . . ;
2 ActionViewConverter conver t e r = c o n t r o l l e r . getActionViewConverter () ;
3
4 ViewGenerator<CustomAction , BasicTit leViewItem<JComponent>> generator =

24

5 new CustomButtonGenerator () ;
6
7 conver t e r . putDefault (CustomAction .CUSTOM, ViewTarget .TITLE,
8 generator) ;

In this code the converter is accessed in line 2. Some new factory is created in
lines 4, 5 and this new factory is registered at the converter in lines 7, 8. The
CustomButtonGenerator is just a class that implements ViewGenerator:

1 public c lass CustomButtonGenerator implements
2 ViewGenerator<CustomAction , BasicTit leViewItem<JComponent>>{
3 public BasicTit leViewItem<JComponent> c r e a t e (
4 ActionViewConverter converter , CustomAction act ion ,
5 Dockable dockable){
6
7 return [. . .]
8 }
9 }

Set a ViewGenerator for ViewTarget.TITLE, ViewTarget.MENU
and for ViewTarget.DROP DOWN. Even if these generators do not
create views but just return null, not installing them would lead
to an error.

6 Titles

A DockTitle is a Component that may show an icon, a text, some DockActions
or other information about a Dockable. Users often grab a DockTitle when
they want to start a drag & drop operation.

Figure 2: Some DockTitles.

6.1 Lifecycle

Any client that wants to show a DockTitle needs to specify what kind of title
it shows and needs to request a title.

The kind of a title is specified by a DockTitleVersion. New
DockTitleVersions are obtained through the DockTitleManager (there is one
per DockController). Creating a new DockTitleVersion requires the calling
client to provide a default DockTitleFactory.

The request for a title is handled by a DockTitleRequest. Once a
DockTitleRequest is created its method request can be called to execute the

25

request. Clients should call install before using the request and uninstall
once the request is no longer in use. This way the DockTitleRequest will auto-
matically be executed again if the underlying DockTitleFactory is exchanged.

Once a DockTitle is acquired it must be connected with its Dockable.
Clients must call the method bind(DockTitle) of Dockable, this tells the
Dockable that is has a new title. If the client no longer shows the title it must
call unbind(DockTitle).

Do not call the method bind or unbind of DockTitle, these meth-
ods are called automatically by the DockController.

Dockables provide some information about their titles:

� The method listBoundTitles returns an list of all
DockTitles which are currently in use for the Dockable.

� A DockableListener has several methods that will be in-
voked if titles get added, removed, updated or exchanged.

6.2 Custom titles

6.2.1 Implementing a new title

It is possible to replace all the titles in the framework. While the interface
DockTitle is rather open, a title is responsible to collect all the information it
wants to show by itself.

Most titles will have a constructor that has a Dockable as argument. They
will add a DockableListener to their Dockable once bind is called and remove
the listener once unbind is called.

There is only one connection between a module that shows a title and the ti-
tle itself: the method changed. Modules use this method to send
DockTitleEvents to the title.

A module does not need to know what title it shows. It just
delivers the DockTitleEvent to the title. The module can use
a subclass of DockTitleEvent to transfer more information than
DockTitleEvent alone could carry. This design allows to use
any implementation of DockTitle at any place while some titles
still can use additional information from their environment. An
example is the EclipseDockTitleEvent which is used by tabs.
This event also tells the titles at which location they are and
whether their tab is focused or not.

There are some classes that can help implementing a custom title:

� AbstractDockTitle provides standard implementations for most of the

26

features a title requires. Subclasses only need to override the method
paintBackground to have their custom painting code used.

� BasicDockTitle paints some gradients as background. Clients can change
the color of these gradients. This title is also a good reference of how things
can be done.

� ButtonPanel is a Component able to display a set of DockActions.
ButtonPanel is able to show a popup-menu if there is not enough space
for all actions.

In order to use the popup menu of ButtonPanel some special
code has to be written. First: the argument menu of the construc-
tor of ButtonPanel has to be set to true. Second: the method
getPreferredSize of ButtonPanel cannot be used, any stan-
dard LayoutManager will fail. Instead the method doLayout of
the Container which shows the panel can be overriden. In this
doLayout method the container should call getPreferredSizes
to obtain a list of possible sizes of the panel. The n’th dimension
in this array tells how big the ButtonPanel would be if it would
show n actions. The container should choose the biggest possible
n and call setVisibleActions.

6.2.2 Apply the title

There are several ways to introduce a custom title into the framework.
To override or implement requestDockTitle of Dockable is the simplest

way. The method just creates a new instance of the custom title when called.
Overriding or implementing requestChildDockTitle of DockStation al-

lows to exchange the title of all children.
The DockTheme can be used as well. Either override the method

getTitleFactory or call setTitleFactory when using a BasicTheme. With
a few exceptions all the modules use the factory of the theme, hence replacing
this factory will have a big effect.

Or use the DockTitleManager to make some better tuned settings. The
DockTitleManager can be accessed by calling getDockTitleManager of
DockController. Search the unique string identifier of the module that uses
a title and call getVersion to access the associated DockTitleVersion. Then
with the help of setFactory a new factory can be introduced. In code this
could look like this:

1 DockContro l ler c o n t r o l l e r = . . .
2
3 DockTitleManager manager = c o n t r o l l e r . getDockTitleManager () ;
4 DockTit leVers ion ve r s i on =
5 manager . getVers ion (Sp l i tDockStat ion . TITLE ID , null) ;
6 v e r s i on . se tFactory (new CustomDockTitleFactory () , P r i o r i t y .CLIENT) ;

27

7 Themes

A DockTheme relates to DockingFrames like a LookAndFeel to Java Swing.
At any given time a DockController is associated with exactly one theme.
The theme defines various graphical elements like icons, painting code and also
some behavior. The current DockTheme can be changed through the method
setTheme:

1 DockContro l ler c o n t r o l l e r = . . .
2 DockTheme theme = new EclipseTheme () ;
3 c o n t r o l l e r . setTheme (theme) ;

7.1 Existing Themes

Several DockThemes are already included in the framework. A list of theme-
factories can be accessed through the method getThemes of DockUI. This sub-
chapter will list up the existing themes and mention some of their specialities.

Keep in mind that DockThemes do not have to follow a specific path for
setting up their views. All the current themes are derived from BasicTheme
and thus share a lot of concepts. Future or custom themes however might be
implemented in different ways.

7.1.1 NoStackTheme

This theme is a wrapper around other themes. It prevents StackDockStations
from having a DockTitle and makes sure that the user cannot drag or create
a StackDockStation into another StackDockStation. The code for creating a
NoStackTheme looks like this:

1 DockTheme o r i g i n a l = . . .
2 DockTheme theme = new NoStackTheme (o r i g i n a l) ;

7.1.2 BasicTheme

The BasicTheme is a simple but working theme. All the other themes of the
framework build upon BasicTheme. This theme shows content whenever possi-
ble. It tries to use all features and thus is quite good for debugging, to check
whether all features are supported.

Figure 3: BasicTheme

28

7.1.3 SmoothTheme

SmoothTheme is basically the same as BasicTheme. The only difference is a
replaced default-DockTitleFactory. As a result new DockTitles are used by
most elements, these new titles smoothly change their color when the “active”
state of their Dockables changes.

7.1.4 FlatTheme

FlatTheme is a variation of BasicTheme that tries to minimze the number
of borders. Among other things it uses new DockTitles and new views for
DockActions. It is the ideal theme for developers that want to learn how to
customize an existing theme.

Figure 4: FlatTheme

7.1.5 BubbleTheme

A more experimental theme. BubbleTheme often uses animations and other
graphical gimmicks. It has a few performance issues, but it is a good theme to
demonstrate the potential of the theme-mechanisms.

Figure 5: BubbleTheme

29

7.1.6 EclipseTheme

EclipseTheme tries to mimmic the behavior and look of the well known IDE
Eclipse. All the Dockables are shown on tabbed-components and often
DockTitles are replaced by the tabs. The theme does not use the default
theme-mechanisms as often as other themes and it might be a bit tricky to
customize the theme. On the other hand it certainly looks good.

Figure 6: EclipseTheme

EclipseTheme offers some keys the map of properties that is stored in
DockProperties. The keys are:

PAINT ICONS WHEN DESELECTED A Boolean that tells whether
icons on tabs should be painted if the tab is not selected. In every tabbed-
component one tab has to be selected and its associated Dockable is the
only visible element on the component.

THEME CONNECTOR An EclipseThemeConnector. The connected tells
whether a DockAction belongs onto a tab, or in a separate list of “unim-
portant” actions. The connector also tells what kind of title to use for a
Dockable.

TAB PAINTER A TabPainter. This class is a factory that creates the tab-
components and sets up other settings that are related with tabs.

The DefaultEclipseThemeConnector puts every DockAction
which is annotated with EclipseTabDockAction onto tabs.

The settings for titles and borders that are given by an
EclipseThemeConnector are not respected if the element is on
a StackDockStations. A StackDockStation always uses some
tabbed-component.

30

7.2 Customize DockThemes

More than 50% of the frameworks source code is only used for painting stuff.
No DockTheme uses particular complex code, just the mass can lead to some loss
of direction. This sub-chapter will give only an overview of the basic classes,
interfaces and concepts.

Many of the mechanisms used by DockThemes can be used by
clients as well.

7.2.1 UI-Properties

UI-properties is a concept to distribute properties to components. A property
could be a Color and a component some DockTitle which uses that color to
paints it background. The basic idea is to use a map. The keys are Strings,
the values are the properties. A DockTheme or a client can modify or put new
key-value pairs into the map and components can read those values which are
interesting for them.

Unfortunatelly a simple map is not enough. There needs to be a way to
specify values that are used only by a subset of components. Or to remain with
the map: the components must become part of the key as well.

The UI-properties provide the necessary features. The mechanism includes
these classes, interfaces and generic parameters:

� UIProperties: the base map.

� V: the generic values that have to be distributed, e.g. the class Color.

� UIValue: A wrapper around V. Each component creates one UIValue for
each query it will ask the UIProperties. In example a DockTitle would
have to create and store exactly one UIValue to represent its background
color. UIValues also act as observer and the UIProperties notify an
UIValue if its wrapped V gets changed.

� UIBridge: An UIBridge is set between a set of UIValues and the
UIProperties. V properties will not be handed directly from
UIProperties to UIValue if there is a bridge between. The bridge can
modify the V property in any way it likes, since the UIBridge knows the
destination of a V it can also use information derived from the UIValue.

The implementation gets more complex:

� For each key several V properties can be put into the base map. Each
value gets assigned another priority (“default”, “theme” or “client”) and
only the one with the highest priority is used.

� Each UIValue is associated with a Path. The Path tells what an UIValue
will do with the V property. The Path also tells what kind of type the
UIValue has.

31

� UIBridges are also associated with a Path. An UIBridge is responsible to
handle all those UIValues that are associated either with the same Path
or a Path that has the bridges Path as prefix.

This scheme allows a flexible handling of resources. On one hand
the number of keys is limited and one method call is enough to
change a lot things in the user interface (e.g. all background colors
of titles). On the other hand clients can implement sophisticated
strategies to change some properties without the need to know in
detail how the property will be used.
Originally this mechanism was invented to handle Colors. Then
it became evident that the same mechanism could be used for
other resources as well. The current implementation requires to
implement several classes for each type of resource. While this
might be annoying for the first use it ensures type safety. In a
system where cause (writing in the map) and effect (reading from
the map) can be separated by dozens of classes and an unknown
amount of time one does not want to care about types as well.

7.2.2 Colors

In order to understand this chapter 7.2.1 should be read first.
All the colors used in the framework are handled by the ColorManager. The

ColorManager is an UIProperties and can be accessed through the
DockController. It’s use could look like this:

1 DockContro l ler c o n t r o l l e r = . . .
2 ColorManager c o l o r s = c o n t r o l l e r . ge tCo lo r s () ;
3 c o l o r s . put (P r i o r i t y .CLIENT, ” t i t l e . a c t i v e . l e f t ” , Color .GREEN) ;

In this snippet the value for the key “title.active.left” is changed to green. The
priority CLIENT is highest possible priority. It is never overridden by the frame-
work.

Or a more sophisticated use could involve a ColorBridge:
1 DockContro l ler c o n t r o l l e r = . . .
2 ColorManager c o l o r s = c o n t r o l l e r . ge tCo lo r s () ;
3 c o l o r s . pub l i sh (P r i o r i t y .CLIENT, T i t l eCo lo r .KIND TITLE COLOR, new

ColorBridge () {
4 public void add (St r ing id , DockColor uiValue){
5 // ignore
6 }
7 public void remove (St r ing id , DockColor uiValue){
8 // ignore
9 }

10 public void s e t (S t r ing id , Color value , DockColor uiValue){
11 T i t l eCo lo r t i t l e = (T i t l eCo lo r) uiValue ;
12 i f (t i t l e . g e tT i t l e () . getDockable () == <somevalue>)
13 t i t l e . s e t (Color .GREEN) ;
14 else
15 t i t l e . s e t (va lue) ;
16 }
17 }) ;

Here a ColorBridge for the Path KIND TITLE COLOR is installed in line 3.
This path is only used by UIValues that implement TitleColor. Hence the
unchecked cast from DockColor to TitleColor in line 11 is safe. The meth-
ods add (line 4-6) and remove (line 7-9) are called by UIProperties when a

32

UIValue gets added or removed to it. These methods can be ignored as long
as the bridge does not change the color on its own. Otherwise the DockColors
could be stored in some list and their method set could be called whenever the
color needs to be exchanged.

This bridge searches for a specific Dockable called “somevalue” (line 12).
The bridge returns GREEN for all colors used by any title of this Dockable. There
is no distinction between the colors for background, foreground or other usages.

There is no global list of keys and every DockTheme uses dif-
ferent keys. All the modules that need colors are annotated
with ColorCodes and expose their own list of keys to the API-
documentation. Also the method updateColors of BasicTheme
or subclasses can help: in this method all the colors that will ever
be used by the theme are written into the ColorManager.

All the standard themes use a ColorScheme as their ini-
tial set of colors. All the standard themes provide a key
for the DockProperties to change that initial scheme. For
example the key provided by BasicTheme is stored as con-
stant BASIC COLOR SCHEME. There are several subclasses of
ColorScheme for the different themes.

By the way: some themes use colors that are read from the current
LookAndFeel. Clients can call the method registerColors of DockUI. This
method takes a LookAndFeelColors which is responsible in reading the colors
from the LookAndFeel.

7.2.3 Fonts

Fonts use the same mechanism as Colors. A FontManager can be accessed
through the methods getFonts of DockController. Unlike colors a set of
standard keys are defined as constants in DockFont.

The FontManager does not distribute Font-objects but FontModifiers. A
FontModifier has one method that receives the original Font and can return
any Font it likes. In example a FontModifier could inverse the bold-property
of a Font. There are two FontModifiers ready to use:

� ConstantFontModifier does not modify anything but always return the
same Font

� GenericFontModifier can modify the italic-, bold- and size-property of
a font.

Clients that want to use a FontModifier might be interested
in the classes DLabel and DPanel which already modify their
font. Also the class FontUpdater can be used to create new
JComponents with the capability to modify their font.

33

7.2.4 Icons

Icons can be modified through the IconManager. The IconManager is just a
map with the capability to inform observers if some of its value changed. The
IconManager can be accessed through the method getIcons of
DockController.

There is no global list of keys in the source code. However the file “icons.ini”
contains a list of keys and paths of all the default icons.

7.2.5 Actions

The views for DockActions are changed through the ActionViewConverter.
Please read chapter 5 for more information.

7.2.6 Titles

DockTitles are managed by the DockTitleManager. Please read chapter 6 for
more information.

7.3 Custom Theme

With the exception of the classes that are directly related to a DockTheme no
code in the framework depends on a special undocummented behavior of a
theme. Clients can reimplement the interface DockTheme without fear to break
things.

A better approach then full reimplementation might be to extend the class
BasicTheme. This class provides some default values which can easily be
changed by the appropriate setXZY method.

DockTheme has a method install, this method can be used to exchange
some values that are not stored in the DockTheme itself. For example to exchange
icons in the IconManager.

A theme dives deep into the framework. Implementing a new
theme requires a lot of time and a good understanding of the
framework. This document might help to understand the basics,
but some stuff can only be found out by looking directly at the
source code.

8 Drag and Drop

To drag a Dockable to a new location and drop it there is the most important
feature of any docking framework. Surprisingly the implementation of this part
is very small.

8.1 Relocator

The sourcecode that detects drag gestures, searches for the target station and
makes sure that the user has some visual feedback is located in the
DefaultDockRelocator. DefaultDockRelocator itself extends from
DockRelocator which just allows to register some listeners and set some useful

34

properties. Clients seldomly need to implement a new DockRelocator. If they
do, then they have to implement a new DockControllerFactory. The code
will look like this:

1 public c lass MyDockControllerFactory extends
Defau l tDockContro l l e rFactory {

2 @Override
3 public DockRelocator c r ea t eRe l o ca to r (DockContro l ler c o n t r o l l e r) {
4 return new MyDockReloactor () ;
5 }
6 }

This factory has then to be given to the constructor of a DockController. For
the remainder of this chapter it is assumed, that the default relocator is in use.

The DockRelocator that is in use can be accessed through the method
getRelocator of DockController.

8.2 Sources

The relocator needs to know where and when the user presses and moves the
mouse. There is more than one solution for this problem.

8.2.1 DockElementRepresentative

A DockElementRepresentative is a Component which represents a Dockable.
Anyone can add MouseInputListeners to a representative and hence be in-
formed about anything the mouse does on top of such a Component.

DockTitle and Dockable are two implementations of
DockElementRepresentative. Their registration is handled automatically. If
clients implement a new representative then they should call the methods
addRepresentative and removeRepresentative of DockController to install
or uninstall the representative.

DockElementRepresentative was added late to the framework.
It carries some legacy code: the method isUsedAsTitle. This
method introduces a distinction between those representations for
which all features are activated (e.g. popup menus) and those
for which only a selected subset is available. Normally clients
implement representatives that are used as title and can return
true here.

The behavior for representations of Dockables that are
not registered is unspecified. Clients should not add a
DockElementRepresentative if its Dockable is unknown to the
DockController.

8.2.2 Remote control

Sometimes it is not possible to implement a DockElementRepresentative. Re-
mote control of a relocator is an alternative for these cases. Remote control is
realized by the classes RemoteRelocator and DirectRemoteRelocator.

35

A RemoteRelocator can be optained by calling createRemote of
DockRelocator. RemoteRelocator should be used in combination with a
MouseListener and a MouseMotionListener:

� MouseListener.mousePressed �RemoteRelocator.init

� MouseMotionListener.mouseDragged �RemoteRelocator.drag

� MouseListener.mouseReleased �RemoteRelocator.drop

The methods init, drag and drop return a Reaction. The reaction tells the
caller what to do next:

� CONTINUE: the operation continues, the event was ignored.

� CONTINUE CONSUMED: the operation continues, the event was consumed.
The caller should invoke MouseEvent.consume.

� BREAK: the operation was canceled, the event was ignored.

� BREAK CONSUMED: the operation was canceled, the event was consumed.
The caller should invoke MouseEvent.consume.

A DirectRemoteRelocator can be optained by calling createDirectRemote
of DockRelocator. A DirectRemoteRelocator is basically the same as a
RemoteRelocator but always assumes that the user pressed the correct but-
ton on the mouse. Its methods do not return a Reaction because it would
always be the same.

Clients can use several remote controls at the same time, they
will cancel out each other if necessary. A RemoteRelocator can
be used several times.

8.3 Destinations

A relocator needs to find the one DockStation on which the Dockable is
dropped.

8.3.1 Search

The DefaultDockRelocator searches the destination anew whenever the mouse
is moved. The search includes these steps:

1. An ordered list of all potential destinations is built. A DockStation is a
potential destination if it is visible (isStationVisible of DockStation),
not the dragged Dockable nor one of its children, and its boundaries
contain the location of the mouse (getStationBounds of DockStation).
The order depends on parent-child relations between the stations, between
the Windows on which the stations are, and on custom conditions that every
station can offer (canCompare and compare of DockStation).

2. Then the method prepareMove or prepareDrop of DockStation is called.
These methods check whether the station really is a good destination.
They return true if so, false if not. The first station that returns true
is the destination.

36

3. The method draw of the new destination is called, the method forget
on the old destination. The new destination will paint some markings to
give a visual feedback to the user, the old destination will delete all the
information about any drag and drop operation.

There is more information about the exact semantics in the API-
documentation for DockStation.

Due of the varieties of stations a general interface for drag and
drop would be very hard to come up with. Hence most of the work
has to be done by the stations itself. This might lead to code that
is written twice, but also allows much freedom in writing stations.
There are some helper classes that can help with the most common
tasks:

� DockController.getAcceptance to access all the global ac-
ceptance tests at once.

� StationPaint, accessible through DockUI.getPaint.

8.3.2 Drop

The moment a user releases the mouse and drops a Dockable the method move
or drop of DockStation is called. These methods can either put the Dockable
somewhere onto the station or merge the Dockable with an existing child of the
station (sometimes referred as “put” and “merge” action). The results of the
first reaction depend on the kind of station. The results of the second reaction
are independent of the kind of station.

Merging normally results in creating a new StackDockStation. The ex-
isting child and the dropped Dockable are put onto that new station. Then
the StackDockStation is put at the place where the existing child was. Cre-
ation of “merged Dockables” is handled by a Combiner, per default by the
BasicCombiner. Many DockStations have a method that allows clients to set
their own implementation of a Combiner. Clients can exchange the Combiner
globally by creating a new DockTheme, overriding the method getCombiner and
then registering a new instance at the DockController through setTheme. Note
that all descendants of BasicDockTheme have a method called setCombiner that
exchanges the Combiner directly without the need to override getCombiner.

Exchanging a Combiner does not affect any existing Dockable or
DockStation, it will only affect the creation of new elements.

37

8.4 Influences

There are a number of factors that can influence the search for a new destination.
Some of them are customizable.

8.4.1 Modes

A DockRelocator can have ”modes”. A mode is some kind of behavior that
is activated when the user presses a certain combination of keys. Modes are
modeled by the class DockRelocatorMode. It is not specified what effect a
mode really has, but normally a mode would add some restrictions where to
put a Dockable during drag and drop. DockRelocatorModes can be added or
removed to a DockRelocator by the methods addMode and removeMode.

Currently two modes are installed:

DockRelocatorMode.SCREEN ONLY (press key shift) ensures that a
Dockable can only be put on a ScreenDockStation. That means that a
Dockable can be directly above a DockStation like a SplitDockStation,
but can’t be dropped there.

DockRelocatorMode.NO COMBINATION (press key alt) ensures that a
Dockable can’t be put over another Dockable. That means, every opera-
tion that would result in a merge is forbidden. Also dropping a Dockable
on already merged Dockables will not be allowed.

The keys that have to be pressed to activate SCREEN ONLY
or NO COMBINATION are the properties SCREEN MASK and
NO COMBINATION MASK. The can be changed by accessing the
DockProperties.

8.4.2 Restrictions

The set of possible destinations for a Dockable can be restricted. There are
several reasons why a client or the framework itself would do that:

� Some Dockable must always be visible.

� Some DockStations represent a special area that can only be used by a
subset of Dockables.

� Some Dockables can only be presented on a certain kind of DockStation.

These restrictions are implemented through acceptance tests. An acceptance
test either checks one “put” or one “merge” action. Tests can be stored at
various locations:

� Every Dockable has two methods called accept.

� Each DockStation has a method accept. This method tells whether some
Dockable can become a child of the DockStation. This method checks
“put” and “merge” actions at the same time.

38

� And then there are DockAcceptances. A DockAcceptance has accept-
methods too. These methods get a DockStation and some Dockables,
and then have to decide whether the elements can be put together. Each
DockAcceptance works on a global scale, and thus they are registered at
the DockController through addAcceptance.

Acceptance tests are very powerful. They have to be implemented
carefully or the drag and drop mechanism might become crippled.

Acceptance tests are performed by the potential destination
DockStation. The DockStation is the first module that knows
where a Dockable will land. Handling acceptance tests allows the
station to cut down the amount of work it does, and to try alter-
native actions (e.g. a “put” instead of a “merge” action) if some
future configuration does not pass the tests.
The drawback is, that a DockStation can break the mechanism
by just not performing the tests.

9 Preferences

The preference system allows the user to change settings which are otherwise
not accessible. An example would be the shortcut for maximizing a Dockable
(ctrl+m). The preference system makes a sharp distinction between model and
view, clients are free to integrate the model in their own view, or to create a
new model and using the standard view. Figure 7 shows the simple version of
the standard view with some random preferences.

Figure 7: The PreferenceDialog showing some random preferences.

9.1 Model

This section explains how the model is organized.

9.1.1 Preference

A preference is an abstract concept. One preference represents some property
of the framework (or of the client). A preference is a set of meta-informations
about a property:

39

Path A unique identifier

TypePath Tells how to work with Value. For example how to present the
value to the user (as text, as image...) or how to store the value. An
object of type Path is used to represent the TypePath.

Value The current value of the property.

ValueInfo Information about the value, e.g. the maximum value for an
Integer-property. The exact meaning of this information depends on
the TypePath.

Value is some Object and TypePath tells the view how to cast
Value in order to use it. If TypePath were a Class then there
would never be doubt whether the correct cast is performed. But
TypePath is a Path and hence an additional indirection is intro-
duced.
The reason for this is that the same Object might need different
treatment in different situations. E.g. an Integer could just be
an int, it could be a natural number or it could be an int from the
range 1 to 100.

There is an interface Preference and a class DefaultPreference
which bring this preference-abstraction to code. It is not necessary
to use them, they are just here to simplify things.

9.1.2 PreferenceModel

The PreferenceModel is the basic module of the preference system. A
PreferenceModel is a list of preferences (the abstraction, not the interface).
It often acts as mediator between some unspecified storage mechanism for prop-
erties and the user interface. The methods read and write are used to access
that covered storage mechanism. To transfer values into the model read is
called, to transver values to the storage mechanism write is called.

DefaultPreferenceModel is the standard implementation of
PreferenceModel. Its entries are objects of type Preference.
Several models can be combined using a
MergedPreferenceModel.

There are several subclasses of DefaultPreferenceModel for var-
ious settings that can be made. For example EclipseThemeModel
handles properties of EclipseTheme.
There are also many implementations of Preference for vari-
ous properties of the framework. The API-documentation reveals
more.

40

9.1.3 PreferenceTreeModel

This model is a PreferenceModel and a javax.swing.TreeModel. If seen as
PreferenceModel, then it behaves like a MergedPreferenceModel. If seen as
TreeModel, then it contains PrefereceTreeModel.Node-objects. A node can
either be just a name, or another PreferenceModel. This model is intended
to be used in a JTree where the user can select one aspect of the whole set of
preferences to show.

The subclass DockingFramesPreferenceModel is the set of pref-
erences which includes all the aspects of the core-library.

9.2 View

A PreferenceModel is best displayed in a PreferenceTable. This table will
show a label, an editor and operations for each preference.

A PreferenceTreeModel can be displayed in a PreferenceTreePanel. It
will show not only a PreferenceTable but also a JTree where the user can
select which sub-model to edit.

Further more the PreferenceDialog and the PreferenceTreeDialog are
available. These dialogs offer the options to apply the settings, to cancel editing
and to reset all preferences to their default value.

9.2.1 Editors

Since there are different types of preferences, different editors are needed. The
kind of editor for one preference is determined by the type-path (getTypePath
in a model). Clients can add new editors to a PreferenceTable through the
method setEditorFactory.

An editor is always of type PreferenceEditor. Each editor gets a
PreferenceEditorCallback with which it can interact with the table. When-
ever the user changes the editors value, the editor should call the method set
of PreferenceEditorCallback to make sure the new value gets stored.

9.2.2 Operations

There are some operations which should be available for almost any preference.
For example set a default value or delete the current value. The preference
system introduces the PreferenceOperation to handle these kind of actions.

A PreferenceOperation is nothing more than a label and an icon. The
logic for an operation is either in an editor or in a model.

Editor: Editors with operations must call the method setOperation of
PreferenceEditorCallback for each operation they offer. By calling
setOperation more than once, the editor can change the enabled state of
the operation. If the user triggers an operation of the editor, the method
doOperation of PreferenceEditor is called. It is then the editors re-
sponsibility to handle the operation.

41

Preference: Preferences can have operations as well. The method
getOperations of PreferenceModel will be called once to get all the
available operations for one preference. The method isEnabled will be
invoked to find out whether an operation is enabled or not. Models can
change the enabled state by calling preferenceChanged of
PreferenceModelListener. If the user triggers an operation,
doOperation of PreferenceModel will be invoked.

If an editor and a preference share the same operations, then per definition the
operations belong to the editor. All settings from the model will just be ignored.

Operations might be confusing at first, but they can be really
useful. The strength of operations is that they are handled auto-
matically, and that they need not much code.

9.3 Storage

The PreferenceStorage can be used to store PreferenceModels in memory or
persistent either as byte-stream or as XML.

The normal way to write a model from memory to the disk looks like this:
1 // the stream we want to wri te into
2 DataOutputStream out = . . .
3
4 // the model we want to s tore
5 PreferenceModel model = . . .
6
7 // And now store the model
8 Pre f e r enceSto rage s to rage = new Pre f e r enceSto rage () ;
9 s to rage . s t o r e (model) ;

10 s to rage . wr i t e (out) ;

Note that there are two phases in writing model. First the model gets stored
(line 9) into storage. It is possible to store more than just one model in a
PreferenceStorage. Second storage gets written onto the disk in line 10.

The standard way to read a model are to apply the same steps in reverse:
1 // the source of any new data
2 DataInputStream in = . . .
3
4 // the model we want to load
5 PreferenceModel model = . . .
6
7 // And now load the model
8 Pre f e r enceSto rage s to rage = new Pre f e r enceSto rage () ;
9 s to rage . read (in) ;

10 s to rage . load (model , fa l se) ;

Like writing this operation has two phases. In line 9 storage gets filled with
information, in line 10 the information gets transfered to model. The argu-
ment false is a hint what to do with missing preferences. In this case missing
preferences are just ignored. A value of true would force them to become null.

There are some preferences which do not need to be stored by the
PreferenceStorage because they are already stored by the underlying sys-
tem. These preferences are called natural, while the others are called artificial.
The method isNatural of PreferenceModel can be used to distinguish them.

42

The distinction between natural and artificial preferences might
seem curious. But actually this allows to use an unlimited number
of storage mechanisms at the same time.

9.4 Lifecycle

This section describes the best way how to use a PreferenceModel.
The correct lifecycle of a PreferenceModel includes normally these steps:

1. Create the model. Set up all the preferences that are used by the model.

2. Call load on a StoragePreference.

3. Call write on the model to synchronize the model with the underlying
system.

4. (work with the underlying system)

5. To work with the model: call first read, then make the changes in the
model, then call write.

6. (work with the underlying system)

7. Call read on the model to synchronize the model with the underlying
system.

8. Store the model using store of a PreferenceStorage.

If the PreferenceStorage used in step 2 is empty because its read or
readXML method failed, then calling read of PreferenceModel would at least
load some default settings.

Steps 4, 5, 6 can be cycled as many times as needed.
An additional step 0 and 9 would be to read and write the

PreferenceStorage when starting up or shuting down the application.

10 Properties

There are a number of interesting settings whose effects are deeply hidden within
the framework. Properties are an easy way to access these settings and change
them. Properties are represented by the class DockProperties which can be
accessed through getProperties of DockController.

DockProperties is nothing else than a map. As keys are instances of
PropertyKey used. The type of the value depends on the key and the map
is typesafe. With the help of a DockPropertyListener any object can be in-
formed immediately when a value changes.

There are a number of keys and the remainder of this chapter will list all of
the keys that are present in version 1.0.7. If not explicitly said otherwise, then
any change in the properties will have an immediate effect.

43

Some of these properties are accessed and changed by DockThemes.

10.1 Themes

BasicTheme.BASIC COLOR SCHEME

Type ColorScheme

Default An instance of BasicColorScheme
Usage The ColorScheme used by BasicTheme.

BubbleTheme.BUBBLE COLOR SCHEME

Type ColorScheme

Default An instance of BubbleColorScheme
Usage The ColorScheme used by BubbleTheme.

FlatTheme.FLAT COLOR SCHEME

Type ColorScheme

Default An instance of FlatColorScheme
Usage The ColorScheme used by FlatTheme.

EclipseTheme.ECLIPSE COLOR SCHEME

Type ColorScheme

Default An instance of EclipseColorScheme
Usage The ColorScheme used by EclipseTheme.

EclipseTheme.PAINT ICONS WHEN DESELECTED

Type Boolean

Default false

Usage Whether to paint icons in tabs of Dockables that are not selected.
This setting might be ignored if a custom TabPainter is applied.

EclipseTheme.TAB PAINTER

Type TabPainter

Default ShapedGradientPainter.FACTORY

Usage How to paint tabs in EclipseTheme for Dockables.

EclipseTheme.THEME CONNECTOR

Type EclipseThemeConnector

Default An instance of DefaultEclipseThemeConnector
Usage Tells how a lonly Dockable gets presented in EclipseTheme.

Whether it has a border and a title. Also tells which DockActions
are to be shown on tabs. Changing this entry will not affect decisions
that were made by the previous connector.

44

10.2 Stations

FlapDockStation.LAYOUT MANAGER

Type FlapLayoutManager

Default An instance of DefaultFlapLayoutManager

Usage Tells the initial size and whether to hold a Dockable in a
FlapDockStation. The default setting uses the same size for all
Dockables and forgets the hold-property as soon as a Dockable is
removed from the station.

FlapDockStation.BUTTON CONTENT

Type ButtonContent

Default ButtonContent.THEME DEPENDENT

Usage Tells which information to display on the buttons that repre-
sent Dockables on a FlapDockStation. Any mix of icons, text and
DockActions is possible.

ScreenDockStation.BOUNDARY RESTRICTION

Type BoundaryRestriction

Default BoundaryRestriction.FREE

Usage Decides about the shape and location a ScreenDockWindow is al-
lowed to have. E.g. BoundaryRestriction might force windows to
be visible only on one of many screens.

ScreenDockStation.WINDOW FACTORY

Type ScreenDockWindowFactory

Default An instance of DefaultScreenDockWindowFactory

Usage The factory used to create new windows for ScreenDockStation.
Changing this property has no effect on existing windows.
DefaultScreenDockWindowFactory can be customized and should
be preferred over newly written factories.

StackDockStation.COMPONENT FACTORY

Type StackDockComponentFactory

Default null

Usage Tells a StackDockStation how to arrange its children.

SplitDockStation.MAXIMIZE ACCELERATOR

Type KeyStroke

Default ctrl+m

Usage The keys that have to be pressed in order to maximize or normalize
a child of SplitDockStation.

SplitDockStation.LAYOUT MANAGER

45

Type SplitLayoutManager

Default An instance of DefaultSplitLayoutManager

Usage The SplitLayoutManager is responsible to handle most of the
actions that can change the layout of a SplitDockStation

10.3 Controlling

DockableSelector.INIT SELECTION

Type KeyStroke

Default ctrl+shift+e

Usage Hitting these keys will open a window where the user can select
the focused Dockable.

DockRelocatorMode.SCREEN MASK

Type ModifierMask

Default shift

Usage If these modifiers are pressed during a drag and drop operation
then DockRelocatorMode.SCREEN ONLY gets activated. This will
force the Dockable to be dropped onto a ScreenDockStation.

DockRelocatorMode.NO COMBINATION MASK

Type ModifierMask

Default alt

Usage If these modifiers are pressed during a drag and drop operation
then DockRelocatorMode.NO COMBINATION gets activated. This will
prevent the dropped Dockable from merging with another Dockable.

DockFrontend.HIDE ACCELERATOR

Type KeyStroke

Default ctrl+F4

Usage If a DockFrontend is in use then hitting these keys will hide the
currently focused Dockable.

10.4 Legacy

AWTComponentCaptureStrategy.STRATEGY

Type AWTComponentCaptureStrategy

Default PAINT ALL STRATEGY

Usage Tells how the framework can take a picture from a Component that
is or contains an AWT-Component. Different strategies are available,
some are more subtile but efficient, others are blunt but working
under harsh conditions.

46

10.5 Gimmicks

PropertyKey.DOCKABLE ICON

Type Icon

Default null

Usage This icon is shown for any Dockable that has no icon set.

PropertyKey.DOCKABLE TITLE

Type String

Default null

Usage This text is shown for any Dockable that has no title set.

PropertyKey.DOCKABLE TOOLTIP

Type String

Default null

Usage This text is shown for any Dockable for which no tooltip was set.

PropertyKey.DOCK STATION ICON

Type Icon

Default null

Usage This icon is shown for any DockStation that has no icon set.

PropertyKey.DOCK STATION TITLE

Type String

Default null

Usage This text is shown for any DockStation that has no title set.

PropertyKey.DOCK STATION TOOLTIP

Type String

Default null

Usage This text is shown for any DockStation for which no tooltip was
set.

47

