
DockingFrames 1.0.3 - FAQ

Benjamin Sigg

March 8, 2008

Contents

1 Writing applications 2
1.1 How to write a close-button? . 2

1.1.1 Solution 1: FDockable . 2
1.1.2 Solution 2: DockFrontend 2
1.1.3 Solution 3: CloseAction 2
1.1.4 Solution 4: New DockAction 3

1.2 How do I layout the contents of a SplitDockStation? 3
1.2.1 Solution 1: SplitDockProperty 3
1.2.2 Solution 2: SplitDockPathProperty 4
1.2.3 Solution 3: SplitDockTree 4
1.2.4 Solution 4: SplitDockGrid 4
1.2.5 Solution 5: Start and store 5

1

Abstract

Some questions that are frequently asked.

1 Writing applications

This section deals with questions that are related to writing code.

1.1 How to write a close-button?

A ”close-button” is some button, most times a cross in the upper right edge,
that closes a Dockable when pressed.

1.1.1 Solution 1: FDockable

When using the common-project, then you can use DefaultSingleCDockable
or DefaultMultipleCDockable. Both CDockables contain a method
setCloseable. Call that method with true.

1 DefaultSingleCDockable dockable = . . .
2 dockable . s e tC l o s e ab l e (true) ;

If you implement the interface SingleCDockable or MultipleCDockable di-
rectly, then ensure that isCloseable returns true.

1.1.2 Solution 2: DockFrontend

When using a DockFrontend, register the Dockable at the DockFrontend and
call setHideable.

1 DockFrontend f rontend = . . .
2 Dockable dockable = . . .
3
4 f rontend . add (dockable , ”a unique id ”) ;
5 f rontend . s e tH ideab l e (dockable , true) ;

1.1.3 Solution 3: CloseAction

If you use the common-project, then a DockAction called CloseAction is avail-
able. Add the action to the Dockables which should be closeable, for example
you could use an ActionGuard:

1 public c lass CloseGuard implements ActionGuard{
2 private DockActionSource source ;
3
4 public CloseGuard (DockContro l ler c o n t r o l l e r){
5 DockAction c l o s e = new CloseAct ion (c o n t r o l l e r) ;
6 source = new DefaultDockActionSource (
7 new Locat ionHint (
8 Locat ionHint .ACTION GUARD,
9 Locat ionHint .RIGHT OF ALL) ,

10 c l o s e) ;
11 }
12
13 public boolean r ea c t (Dockable dockable) {
14 return true ;
15 }
16 public DockActionSource getSource (Dockable dockable) {
17 return source ;
18 }
19 }

2

And later:
1 DockContro l ler c o n t r o l l e r = . . .
2 c o n t r o l l e r . addActionGuard (new CloseGuard (c o n t r o l l e r)) ;

1.1.4 Solution 4: New DockAction

If CloseAction of the common-project can’t be used, then a new DockAction
must be written.

1 public c lass CloseAct ion extends SimpleButtonAction{
2 public CloseAct ion (DockContro l ler c o n t r o l l e r){
3 setText (”Close ”) ;
4 s e t I c on (new ImageIcon (” c l o s e . png”)) ;
5 }
6
7 @Override
8 public void ac t i on (Dockable dockable) {
9 DockStation parent = dockable . getDockParent () ;

10 i f (parent != null)
11 parent . drag (dockable) ;
12 }
13 }

This action is then used as described in the third solution.

1.2 How do I layout the contents of a SplitDockStation?

The SplitDockStation has a complex layout. How can new Dockables be
added to SplitDockStation such that they have a certain location and size?

1.2.1 Solution 1: SplitDockProperty

A SplitDockProperty describes the size and location of a Dockable on a
SplitDockStation by storing the x, y coordinates, and the width and height.
All the properties are normalized such that they are between 0 and 1.

A client can create new SplitDockPropertys and call drop:
1 Sp l i tDockStat ion s t a t i o n = . . .
2 Dockable alpha = . . .
3 Dockable beta = . . .
4
5 i f (! s t a t i o n . drop (alpha , Spl i tDockProperty .NORTH))
6 s t a t i o n . drop (alpha) ;
7
8 i f (! s t a t i o n . drop (beta , new Spl i tDockProperty (0 , 0 , 1 , 1)))
9 s t a t i o n . drop (beta) ;

A few words to this code: in lines 5 and 8, the result of drop needs to be checked.
It is possible, that SplitDockStation refuses to add a Dockable.

SplitDockStation internally has a binary tree in whose leafs the Dockables
are stored, and the nodes determine the proportions between the Dockables.
Each drop adds a new branch into that tree. The SplitDockProperty is only
a hint where to insert the branch, and will not be stored for later use. So this
station does not work like a LayoutManager, the order in which the Dockables
are dropped is important. The first Dockable will always get boundaries of
0,0,1,1.

3

1.2.2 Solution 2: SplitDockPathProperty

As set earlier, SplitDockStation is internally organized as a binary tree. A
SplitDockPathProperty is the description of the exact location of a branch. It
is used like SplitDockProperty:

1 Sp l i tDockStat ion s t a t i o n = . . .
2 Dockable dockable = . . .
3
4 Spl itDockPathProperty path = new SplitDockPathProperty () ;
5 path . add (Spl itDockPathProperty . Locat ion .BOTTOM, 0 .4) ;
6 path . add (Spl itDockPathProperty . Locat ion .LEFT, 0 .25) ;
7 i f (! s t a t i o n . drop (dockable , path))
8 s t a t i o n . drop (dockable) ;

In lines 5,6 a branch to the bottom left edge is created.

1.2.3 Solution 3: SplitDockTree

A SplitDockTree is an exact model of the internal binary tree that every
SplitDockStation has. When calling dropTree, all Dockables will be removed
from the station, and the new tree will replace the old one.

1 Sp l i tDockStat ion s t a t i o n = . . .
2 Dockable [] dockables = . . .
3
4 Spl itDockTree t r e e = new Spl itDockTree () ;
5 t r e e . root (
6 t r e e . h o r i z on t a l (
7 t r e e . v e r t i c a l (
8 dockables [0] ,
9 dockables [1] ,

10 0 .4) ,
11 t r e e . v e r t i c a l (
12 t r e e . put (
13 dockables [2]) ,
14 t r e e . put (
15 dockables [3] ,
16 dockables [4]))
17)
18) ;
19 s t a t i o n . dropTree (t r e e) ;

Note that several Dockables can be put at the same location as shown in lines
14-16.

1.2.4 Solution 4: SplitDockGrid

A SplitDockGrid is an algorithm that takes several Dockables and their desired
location, and creates a SplitDockTree that matches these locations as good as
possible.

The use is straight forward:
1 Sp l i tDockStat ion s t a t i o n = . . .
2 Dockable [] dockables = . . .
3
4 Spl itDockGrid g r id = new Spl itDockGrid () ;
5 g r id . addDockable (0 . 0 , 0 . 0 , 0 . 5 , 0 . 5 , dockables [0]) ;
6 g r id . addDockable (0 . 0 , 0 . 5 , 0 . 5 , 0 . 5 , dockables [1]) ;
7 g r id . addDockable (0 . 5 , 0 . 0 , 0 . 5 , 0 . 5 , dockables [2]) ;
8 g r id . addDockable (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , dockables [3]) ;
9 s t a t i o n . dropTree (g r id . toTree ()) ;

There is also the possibility to model the layout with a String:

4

1 Sp l i tDockStat ion s t a t i o n = . . .
2 Dockable [] dockables = . . .
3
4 Map<Str ing , Dockable [] > map = new HashMap<Str ing , Dockable [] > () ;
5 for (int i = 0 ; i < dockables . l ength ; i++){
6 map . put (
7 St r ing . valueOf (i) ,
8 new Dockable [] { dockables [i] }) ;
9 }

10
11 St r ing layout =
12 ”0022\n”+
13 ”0022\n”+
14 ”1133\n”+
15 ”1133” ;
16
17 Spl itDockGrid g r id = new Spl itDockGrid (layout , map) ;
18 s t a t i o n . dropTree (g r id . toTree ()) ;

The layout is defined in lines 12-15, just image a raster where the characters
tell which Dockable should overlap a given cell.

1.2.5 Solution 5: Start and store

If your application is able to store the layout, then just start the application,
make the layout by hand, and store the layout.

The common-project or DockFrontend can help you storing one or several
layouts.

5

